A. | 1 | B. | 2 | C. | $\frac{1}{3}$ | D. | $\frac{2}{3}$ |
分析 求出$\overrightarrow{BA}$,點A到平面α的距離:d=$\frac{|\overrightarrow{BA}•\overrightarrow{n}|}{|\overrightarrow{n}|}$,由此能求出結(jié)果.
解答 解:∵平面α的一個法向量為$\overrightarrow{n}$=(1,2,2),
A=(1,0,2),B=(0,-1,4),A∉α,B∈α,
∴$\overrightarrow{BA}$=(1,1,-2),
點A到平面α的距離:
d=$\frac{|\overrightarrow{BA}•\overrightarrow{n}|}{|\overrightarrow{n}|}$=$\frac{|1+2-4|}{\sqrt{1+4+4}}$=$\frac{1}{3}$.
故選:C.
點評 本題考查點到平面的距離的求法,是基礎(chǔ)題,解題時要認真審題,注意向量法的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,40] | B. | [160,+∞) | C. | (-∞,40)∪(160,+∞) | D. | (-∞,40]∪[160,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若直線a∥平面α,直線b⊥a,b?平面β,則α⊥β | |
B. | 若直線a⊥直線b,a⊥平面α,b⊥平面β,則α⊥β | |
C. | 過平面外的一條直線有且只有一個平面與已知平面垂直 | |
D. | 過平面外一點有且只有一個平面與已知平面垂直 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com