已知四面體P-ABC的外接球的球心O在AB上,且PO⊥平面ABC,2AC=
3
AB,若四面體P-ABC的體積為
3
2
,則該球的表面積為
 
考點:球的體積和表面積
專題:計算題,空間位置關(guān)系與距離
分析:設(shè)該球的半徑為R,則AB=2R,2AC=
3
AB=
3
×2R,故AC=
3
R,由于AB是球的直徑,所以△ABC在大圓所在平面內(nèi)且有AC⊥BC,由此能求出球的表面積.
解答: 解:設(shè)該球的半徑為R,則AB=2R,2AC=
3
AB=
3
×2R,
∴AC=
3
R,
由于AB是球的直徑,
所以△ABC在大圓所在平面內(nèi)且有AC⊥BC,
在Rt△ABC中,由勾股定理,得:BC2=AB2-AC2=R2,
所以Rt△ABC面積S=
1
2
×BC×AC=
3
2R2
,
又PO⊥平面ABC,且PO=R,四面體P-ABC的體積為
3
2
,
∴VP-ABC=
1
3
×R×
3
2
×R2=
3
2

3
R3=9,R=
3

所以:球表面積S=4πR2=12π.
故答案為:12π.
點評:本題考查四面體的外接球的表面積的求法,解題時要認真審題,仔細解答,注意合理地化空間問題為平面問題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知與拋物線x2=4y有相同的焦點的橢圓E:
y2
a2
+
x2
b2
=1(a>b>0)的上下頂點分別為A(0,2),B(0,-2),過(0,1)的直線與橢圓E交于M,N兩點,與拋物線交于C,D兩點,過C,D分別作拋物線的兩切線l1,l2
(1)求橢圓E的方程并證明l1⊥l2
(2)當kMN=2時求△AMN面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知動圓M與圓C1:(x+3)2+y2=9外切且與圓C2:(x-3)2+y2=1內(nèi)切,則動圓圓心M的軌跡方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=|x-
4
m
|+|x+m|(m>0)
(1)證明:f(x)≥4;
(2)若f(2)>5,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖中還有“哺乳動物”“地龜”“長尾雀”三項未填,請補充完整這一結(jié)構(gòu)圖.

則①為
 
;②為
 
;③為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若方程x2+y2-4x+8y+F=0表示4為半徑的圓,則F=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P(2,5),M為圓(x+1)2+(y-1)2=4上任一點,則PM的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=log2(2x-1)的定義域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2是雙曲線3x2-5y2=15的兩個焦點,點A在雙曲線上,且△F1AF2面積等于2
2
,則∠F1AF2=
 

查看答案和解析>>

同步練習冊答案