設(shè)函數(shù)f(x)是偶函數(shù),且當(dāng)x>0時(shí),f(x)=
2
x+1
,則在區(qū)間[-4,-2]內(nèi),函數(shù)f(x)( 。
A、單調(diào)遞增,最大值
2
5
B、單調(diào)遞減,最大值
2
3
C、單調(diào)遞增,最小值
2
3
D、單調(diào)遞增,最大值
2
3
考點(diǎn):奇偶性與單調(diào)性的綜合
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系,進(jìn)行判斷即可.
解答: 解:當(dāng)x>0時(shí),f(x)=
2
x+1
為減函數(shù),則在[2,4]上,f(x)的最大值為f(2)=
2
3
,最小值為f(4)=
2
5

∵函數(shù)f(x)是偶函數(shù),
∴在區(qū)間[-4,-2]內(nèi)為增函數(shù),且最大值為f(-2)=
2
3
,最小值為f(-4)=
2
5
,
故選:A
點(diǎn)評(píng):本題主要考查函數(shù)單調(diào)性和最值的判斷,根據(jù)函數(shù)奇偶性和單調(diào)性的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

把正方形ABCD沿對(duì)角線BD折成直二面角后,有如下四個(gè)結(jié)論:
①AC⊥BD;                           ②△ACD是等邊三角形;
③AB與平面BCD成60°角;      ④AB與CD所成角為60°
其中正確的結(jié)論是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的偶函數(shù)f(x)滿足f(x)=f(x+2),當(dāng)x∈[3,4]時(shí),f(x)=x-2,則有下面三個(gè)式子:①f(sin
1
2
)<f(cos
1
2
);②f(sin
π
3
)<f(cos
π
3
);③f(sin1)<f(cos1);其中一定成立的是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|log4x<1},集合B={x|2x<8},則A∩B等于(  )
A、(-∞,4)
B、(0,4)
C、(0,3)
D、(-∞,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列不等式(組)的解集,并用區(qū)間表示:
(1)3x+4<5x-6;
(2)
x+3<4
x+1≥-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解方程:
7x-4
-
7x-5
=
4x-1
-
4x-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是偶函數(shù),且x≥0時(shí),f(x)=sin2x,則f(-
13π
6
)=( 。
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)是偶函數(shù),對(duì)任意x∈R都有f(x+2)=f(x),且x∈[-1,0]時(shí),f(x)=-x,則方程f(x)=lgx的實(shí)根個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A={x|x2-2x>0},集合B是函數(shù)y=lg(2-x)的定義域,則A∩B=( 。
A、(-∞,0)
B、(0,1)
C、(1,2)
D、(2,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案