1.已知M為△ABC內(nèi)一點,$\overrightarrow{AM}$=$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{1}{4}$$\overrightarrow{AC}$,則△ABM和△ABC的面積之比為( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

分析 作出圖形,則兩三角形的面積比等于兩三角形高的比,轉(zhuǎn)化為$\frac{AE}{AC}$.

解答 解:設$\overrightarrow{AD}=\frac{1}{3}\overrightarrow{AB}$,$\overrightarrow{AE}=\frac{1}{4}\overrightarrow{AC}$,以AD,AE為鄰邊作平行四邊形ADME,延長EM交BC與F,連BM.
則EF∥AB,
∴$\frac{{S}_{△ABM}}{{S}_{△ABC}}$=$\frac{AE}{AC}$=$\frac{1}{4}$.

故選:A.

點評 本題考查了平面向量線性運算的幾何意義,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.一個幾何體的三視圖如圖所示,其中正(主)視圖和側(cè)(左)視圖是腰長為l的兩個全等的等腰直角三角形,則該多面體的各條棱中最長棱的長度為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.化簡(1+$\sqrt{x}$)5+(1-$\sqrt{x}$)5按x升冪排列為2+20x+10x2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.函數(shù)y=f(x)圖象上不同兩點A(x1,y1),B(x2,y2)處的切線的斜率分別是kA,kB,規(guī)定K(A,B)=$\frac{{|{k_A}-{k_B}|}}{|AB|}$(|AB|為線段AB的長度)叫做曲線y=f(x)在點A與點B之間的“近似曲率”.設曲線y=$\frac{1}{x}$上兩點A(a,$\frac{1}{a}$),B($\frac{1}{a}$,a)(a>0且a≠1),若m•K(A,B)>1恒成立,則實數(shù)m的取值范圍是[$\frac{\sqrt{2}}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知直線m,n與平面α,β,下列命題中錯誤的是( 。
A.若m⊥α,n⊥α,則m∥nB.若m⊥β,n∥β,則m⊥n
C.若m⊥α,n⊥β,α⊥β,則m⊥nD.若m∥n,n?α,則m∥α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.在△ABC中,“A=B”是“sinAcosA=sinBcosB”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.某企業(yè)生產(chǎn)A、B兩種產(chǎn)品,它們的原料中均含甲、乙兩種溶液,生產(chǎn)每件產(chǎn)品所需兩種溶液的劑量如下表所示:
單位:升AB
42
15
生產(chǎn)產(chǎn)品A和B每件分別獲得利潤2萬元、3萬元,現(xiàn)只有甲、乙兩種溶液各60升,該企業(yè)有三種生產(chǎn)方案,方案一:只生產(chǎn)A.方案二:只生產(chǎn)B.方案三:按一定比例生產(chǎn)A、B實現(xiàn)利潤最大化.
(1)方案一和方案二中哪種方案利潤較高;
(2)按照方案三生產(chǎn),則產(chǎn)品A、B各生產(chǎn)多少件,最大利潤為多少,判斷方案三是否優(yōu)于方案一和方案二.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.銳角△ABC三個內(nèi)角A、B、C,它們的對邊分別為a、b、c,已知C=$\frac{π}{4}$,c=$\sqrt{2}$,求a2+b2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.若一個球的半徑與它的內(nèi)接圓錐的底面半徑之比為$\frac{5}{3}$,且內(nèi)接圓錐的軸截面為銳角三角形,則該球的體積與它的內(nèi)接圓錐的體積之比等于$\frac{500}{81}$.

查看答案和解析>>

同步練習冊答案