10.函數(shù)y=(2x-1)${\;}^{-\frac{1}{2}}$+log2(x-x2)的定義域為($\frac{1}{2}$,1)(用區(qū)間表示)

分析 化分數(shù)指數(shù)冪為根式,再由分母中根式內(nèi)部的代數(shù)式大于0,對數(shù)式的真數(shù)大于0聯(lián)立不等式組求解.

解答 解:∵y=(2x-1)${\;}^{-\frac{1}{2}}$+log2(x-x2)=$\frac{1}{\sqrt{2x-1}}+lo{g}_{2}(x-{x}^{2})$,
∴要使原函數(shù)有意義,則$\left\{\begin{array}{l}{2x-1>0}\\{x-{x}^{2}>0}\end{array}\right.$,解得$\frac{1}{2}<x<1$.
∴函數(shù)y=(2x-1)${\;}^{-\frac{1}{2}}$+log2(x-x2)的定義域為($\frac{1}{2}$,1).
故答案為:($\frac{1}{2}$,1).

點評 本題考查函數(shù)的定義域及其求法,考查了不等式組的解法,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=3x+λ•3-x(λ∈R)
(1)根據(jù)λ的不同取值,討論函數(shù)的奇偶性,并說明理由;
(2)若不等式f(x)≤6在x∈[0,2]上恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=a-$\frac{1}{|x|}$,a∈R.
(1)若函數(shù)f(x)的定義域和值域均為[$\frac{1}{2}$,2],求實數(shù)a的值.
(2)設m<n<0,試問是否存在實數(shù)a,使函數(shù)f(x)的定義域與值域均為[m,n]?若存在,請求出a的取值范圍,并指出m,n所滿足的條件;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知函數(shù)f(x)=1og4(4x+1)+kx(k∈R)是偶函數(shù),則f(x)的最小值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.若a,a+2,3a+3成等比數(shù)列,則實數(shù)a的為$\frac{1±\sqrt{33}}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.設f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$,求:f($\frac{1}{2010}$)+f($\frac{1}{2009}$)+…+f($\frac{1}{3}$)+f($\frac{1}{2}$)+f(2)+…+f(2009)+f(2010)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若函數(shù)f(x)=$\frac{a-sinx}{cosx}$在區(qū)間($\frac{π}{6}$,$\frac{π}{3}$)上單調(diào)遞增,則實數(shù)a的取值范圍是( 。
A.[2,+∞)B.(2,+∞)C.[$\sqrt{3}$,+∞)D.(-$\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖所示的幾何體中,四邊形ABCD是等腰梯形,AB∥CD,∠DAB=60°,F(xiàn)C⊥平面ABCD,AE⊥BD,若CB=CD=CF=a.
(Ⅰ)求證:平面BDE⊥平面AED;
(Ⅱ)求三棱錐A-CDF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.隨著2022年北京冬奧會的成功申辦,冰雪項目已經(jīng)成為北京市民冬季休閑娛樂的重要方式.為普及冰雪運動,寒假期間學校組織高一年級學生參加冬令營.其中一班有3名男生和1名女生參加,二班有2名男生和2名女生參加.活動結束時,要從參加冬令營的學生中選出部分學生進行展示.
(Ⅰ)若要從參加冬令營的這8名學生中任選4名,求選出的4名學生中有女生的概率;
(Ⅱ)若要從一班和二班參加冬令營的學生中各任選2名,設隨機變量X表示選出的女生人數(shù),求X的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案