分析 利用函數(shù)是偶函數(shù)定義,求出k,然后求解函數(shù)的最值.
解答 解:函數(shù)f(x)=1og4(4x+1)+kx(k∈R)是偶函數(shù),
可得:f(-x)=f(x),即:1og4(4-x+1)-kx=1og4(4x+1)+kx,
可得1og4(4x+1)-1og44x-kx=1og4(4x+1)+kx,
即:-x-kx=kx,解得k=-$\frac{1}{2}$.
知函數(shù)f(x)=1og4(4x+1)-$\frac{1}{2}$x.當(dāng)x>0時(shí),1og4(4x+1)>1og44x=x,
1og4(4x+1)-$\frac{1}{2}$x>x-$\frac{1}{2}x$=$\frac{1}{2}x$,函數(shù)f(x)=1og4(4x+1)-$\frac{1}{2}$x.是增函數(shù),
x<0時(shí),f(x)=1og4(4x+1)-$\frac{1}{2}$x是減函數(shù),所以函數(shù)在x=0時(shí)取得最小值.
f(0)=1og4(40+1)-0=$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.
點(diǎn)評(píng) 本題考查函數(shù)的最值的求法,函數(shù)的奇偶性的性質(zhì)與應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com