20.若a<0,則關(guān)于x的不等式x2-4ax-5a2>0的解集是( 。
A.(-∞,-a)∪(5a,+∞)B.(-∞,5a)∪(-a,+∞)C.(5a,-a)D.(a,-5a)

分析 關(guān)于x的不等式x2-4ax-5a2>0等價于(x-5a)(x+a)>0,解得即可.

解答 解:關(guān)于x的不等式x2-4ax-5a2>0等價于(x-5a)(x+a)>0,
∵a<0,
∴5a<-a,
解得x>-a,或x<5a,
∴不等式的解集為(-∞,5a)∪(-a,+∞),
故選:B.

點評 本題考查一元二次不等式的解法,注意等價關(guān)系.屬簡單題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知復(fù)數(shù)z=$\frac{3+2i}{2-3i}$,則z的共軛復(fù)數(shù)$\overline z$=( 。
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≤1}\\{\frac{2}{x},x>1}\end{array}\right.$,則f(f(2))=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(1)已知平面向量$\overrightarrow{α}$,$\overrightarrow{β}$,|$\overrightarrow{α}$|=1,$\overrightarrow{β}$=(2,0),$\overrightarrow{α}$⊥($\overrightarrow{α}$-2$\overrightarrow{β}$),求|2$\overrightarrow{α}$+$\overrightarrow{β}$|的值;
(2)已知三個向量$\overrightarrow{a}$、$\overrightarrow$、$\overrightarrow{c}$兩兩所夾的角都為120°,|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,|$\overrightarrow{c}$|=3,求向量$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$與向量$\overrightarrow{a}$的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知直線$\left\{\begin{array}{l}{x=2-\frac{1}{2}t}\\{y=-1+\frac{1}{2}t}\end{array}\right.$(t為參數(shù))與圓$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$ (θ為參數(shù))相交于A、B兩點,則|AB|的值是$\sqrt{14}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知等差數(shù)列{an}中,a1+a4+a7=15,a2a4a6=45.
(1)求此數(shù)列的通項公式;
(2)當(dāng)公差d<0時求數(shù)列前n項和的最大值并求此時n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知單位向量$\overrightarrow{a}$,$\overrightarrow$間的夾角為$\frac{2π}{3}$,則|4$\overrightarrow{a}$-5$\overrightarrow$|=$\sqrt{61}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an},a1=2,an+1=2an+2n+1,bn=$\frac{{a}_{n}}{{2}^{n}}$,n∈N*
(1)證明數(shù)列{bn}為等差數(shù)列,并求數(shù)列{an}和{bn}通項公式;
(2)求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知數(shù)列{an}滿足:an+1+2an=0,且a2=2,則{an}前10項和等于(  )
A.$\frac{1-{2}^{10}}{3}$B.-$\frac{1-{2}^{10}}{3}$C.210-1D.1-210

查看答案和解析>>

同步練習(xí)冊答案