【題目】在直三棱柱中,為正三角形,點在棱上,且,點、分別為棱、的中點.

1)證明:平面;

2)若,求直線與平面所成的角的正弦值.

【答案】1)見解析;(2.

【解析】

1)連接,連接分別交于點、,再連接,證明出,結合條件可得出,然后利用直線與平面平行的判定定理可證明出平面;

2)取的中點,連接、,證明出平面,且,設等邊三角形的邊長為,并設,以點為坐標原點,、、所在直線分別為軸、軸、軸建立空間直角坐標系,由得出的值,并計算出平面的法向量,利用空間向量法求出直線與平面所成的角的正弦值.

1)如下圖所示,連接,連接分別交于點、,再連接,

、分別為的中點,則,,則的中點,

在直三棱柱中,,則四邊形為平行四邊形,

,的中點,,,

,

平面,平面平面;

2)取的中點,連接、,

四邊形為平行四邊形,則,

、分別為的中點,,所以,四邊形是平行四邊形,

,在直三棱柱中,平面平面,

是等邊三角形,且點的中點,

以點為坐標原點,、所在直線分別為軸、軸、軸建立空間直角坐標系,

的邊長為,,則點、、、、,,

,則,得,

,.

設平面的法向量為,由,得.

,可得,,所以,平面的一個法向量為,

,

因此,直線與平面所成的角的正弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】本小題滿分12如圖,三棱柱ABC-A1B1C1,CA=CB,AB=A A1,BA A1=60°.

)證明ABA1C;

)若平面ABC平面AA1B1B,AB=CB直線A1C 與平面BB1C1C所成角正弦值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1)討論的單調性;

(2)當時,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在長方形中,,,點為線段上一動點,現(xiàn)將沿折起,使點在面內的射影在直線上,當點運動到,則點所形成軌跡的長度為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】命題方程表示雙曲線;命題不等式的解集是. 為假, 為真的取值范圍.

【答案】

【解析】試題分析:由命題方程表示雙曲線,求出的取值范圍,由命題不等式的解集是,求出的取值范圍,由為假, 為真,得出一真一假,分兩種情況即可得出的取值范圍.

試題解析:

,

范圍為

型】解答
束】
18

【題目】如圖,設是圓上的動點,軸上的投影 上一點,.

1)當在圓上運動時,求點的軌跡的方程;

2)求過點且斜率為的直線被所截線段的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠的機器上有一種易損元件A,這種元件在使用過程中發(fā)生損壞時,需要送維修處維修.工廠規(guī)定當日損壞的元件A在次日早上 830 之前送到維修處,并要求維修人員當日必須完成所有損壞元件A的維修工作.每個工人獨立維修A元件需要時間相同.維修處記錄了某月從1日到20日每天維修元件A的個數(shù),具體數(shù)據(jù)如下表:

日期

1

2

3

4

5

6

7

8

9

10

元件A個數(shù)

9

15

12

18

12

18

9

9

24

12

日期

11

12

13

14

15

16

17

18

19

20

元件A個數(shù)

12

24

15

15

15

12

15

15

15

24

從這20天中隨機選取一天,隨機變量X表示在維修處該天元件A的維修個數(shù).

(Ⅰ)求X的分布列與數(shù)學期望;

(Ⅱ)若a,b,且b-a=6,求最大值;

(Ⅲ)目前維修處有兩名工人從事維修工作,為使每個維修工人每天維修元件A的個數(shù)的數(shù)學期望不超過4個,至少需要增加幾名維修工人?(只需寫出結論)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(多選)已知函數(shù),其中正確結論的是( )

A.時,函數(shù)有最大值.

B.對于任意的,函數(shù)一定存在最小值.

C.對于任意的,函數(shù)上的增函數(shù).

D.對于任意的,都有函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形為平行四邊形,平面,,.

1)若是線段的中點,求證:平面;

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點,圓軸的正半軸的交點是,過點的直線與圓交于不同的兩點.

1)若直線軸交于,且,求直線的方程;

2)設直線的斜率分別是,求的值;

3)設的中點為,點,若,求的面積.

查看答案和解析>>

同步練習冊答案