A. | 2n-1 | B. | ($\frac{3}{2}$)n-1 | ||
C. | ($\frac{2}{3}$)n-1 | D. | $\left\{\begin{array}{l}{1,n=1}\\{\frac{1}{2}{•(\frac{3}{2})}^{n-2},n≥2}\end{array}\right.$ |
分析 根據(jù)數(shù)列{an}的前n項(xiàng)和與等比數(shù)列的定義,得出an+1與an的關(guān)系,從而求出數(shù)列{an}的通項(xiàng)公式.
解答 解:數(shù)列{an}的前n項(xiàng)和為Sn,
a1=1,Sn=2an+1,
∴Sn-1=2an,n≥2,
∴an=Sn-Sn-1=2an+1-2an,n≥2
即an+1=$\frac{3}{2}$an,n≥2
∴從第2項(xiàng)起,數(shù)列{an}是以公比q=$\frac{3}{2}$的等比數(shù)列,
且a2=$\frac{1}{2}$S1=$\frac{1}{2}$a1=$\frac{1}{2}$;
∴n≥2時(shí),an=$\frac{1}{2}$•${(\frac{3}{2})}^{n-2}$;
∴an=$\left\{\begin{array}{l}{1,n=1}\\{\frac{1}{2}{•(\frac{3}{2})}^{n-2},n≥2}\end{array}\right.$.
故選:D.
點(diǎn)評(píng) 本題考查了數(shù)列{an}的前n項(xiàng)和與等比數(shù)列的定義、通項(xiàng)公式的應(yīng)用問題,是綜合性題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x∈R,x2+2x+1=0 | B. | ?x∈R,-$\sqrt{x+1}$≥0 | ||
C. | ?x∈N*,log2x>0 | D. | ?x∈R,cosx<2x-x2-3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3x+y=0 | B. | x-3y=10 | C. | 3x+y=5 | D. | x-3y=5 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com