A. | 2 | B. | 4 | C. | 6 | D. | 多于6 |
分析 先根據(jù)題意確定f(x)的周期和奇偶性,進(jìn)而在同一坐標(biāo)系中畫出兩函數(shù)大于0時的圖象,可判斷出x>0時的兩函數(shù)的交點(diǎn),最后根據(jù)對稱性可確定最后答案.
解答 解:∵f(x+2)=f(x),x∈(-1,1)時f(x)=|x|,
∴f(x)是以2為周期的偶函數(shù)
∵y=log3|x|也是偶函數(shù),
∴y=f(x)的圖象與函數(shù)y=log3|x|的圖象的交點(diǎn)個數(shù)只要考慮x>0時的情況即可
當(dāng)x>0時圖象如圖:
故當(dāng)x>0時y=f(x)的圖象與函數(shù)y=log3|x|的圖象有2個交點(diǎn)
∴y=f(x)的圖象與函數(shù)y=log3|x|的圖象的交點(diǎn)個數(shù)為4
故選:B.
點(diǎn)評 本題主要考查函數(shù)的基本性質(zhì)--單調(diào)性、周期性,考查數(shù)形結(jié)合的思想.?dāng)?shù)形結(jié)合在數(shù)學(xué)解題中有重要作用,在掌握這種思想能夠給解題帶來很大方便.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a2+b2>2ab | B. | $a+b≥2\sqrt{ab}$ | C. | $\frac{a}+\frac{a}$≥2 | D. | $\frac{1}{a}+\frac{1}≥\frac{2}{{\sqrt{ab}}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-4]∪[3,+∞) | B. | (-∞,-2]∪[-1,+∞) | C. | [-2,-1] | D. | [-4,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{3}{5}$ | B. | $-\frac{2}{5}$ | C. | 1 | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $f(x)={log_2}^x-3$ | B. | $f(x)=\sqrt{x}-4$ | C. | f(x)=$\frac{1}{x-1}$ | D. | f(x)=x2+2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $4\sqrt{2}$ | C. | $2\sqrt{2}$ | D. | 8 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com