2.如圖所示,DC⊥平面BCEF,且四邊形ABCD為矩形,四邊形BCEF為直角梯形,BF∥CE,BC⊥CE,DC=CE=4,BC=BF=2.
(Ⅰ) 求證:AF∥平面CDE;
(Ⅱ) 求平面AEF與平面ABCD所成銳二面角的余弦值.

分析 (Ⅰ)以C為原點(diǎn),CB所在直線為x軸,CE所在直線為y軸,CD所在直線為z軸,建立空間直角坐標(biāo)系.利用向量法能證明AF∥平面CDE.
(Ⅱ)求出平面AEF的一個(gè)法向量和平面ABCD一個(gè)法向量,利用向量法能求出平面ADE與平面BCEF所成銳二面角的余弦值.

解答 證明:(Ⅰ)以C為原點(diǎn),CB所在直線為x軸,CE所在直線為y軸,CD所在直線為z軸,
建立如圖所示空間直角坐標(biāo)系.
則C(0,0,0),B(2,0,0),D(0,0,4),E(0,4,0),A(2,0,4),F(xiàn)(2,2,0),
則$\overrightarrow{AF}$=(0,2,-4),$\overrightarrow{CB}$=(2,0,0).
$\overrightarrow{CB}$=(2,0,0)為平面CDE的一個(gè)法向量.  …(3分)
又$\overrightarrow{AF}•\overrightarrow{CB}$=0,AF?平面CDE,
∴AF∥平面CDE. …(5分)
解:(Ⅱ)設(shè)平面AEF的一個(gè)法向量為$\overrightarrow{{n}_{1}}$=(x1,y1,z1),則$\left\{\begin{array}{l}\overrightarrow{n_1}•\overrightarrow{AE}=0\\ \overrightarrow{n_1}•\overrightarrow{AF}=0\end{array}\right.$,
∵$\overrightarrow{AE}=(-2,4,-4),\overrightarrow{AF}=(0,2,-4)$,
∴$\left\{\begin{array}{l}-2{x_1}+4{y_1}-4{z_1}=0\\ 2{y_1}-4{z_1}=0\end{array}\right.$,取z1=1,得$\overrightarrow{n_1}=(2,2,1)$.  …(8分)
又∵CE⊥平面ABCD,∴平面ABCD一個(gè)法向量為$\overrightarrow{n_2}=\overrightarrow{CE}=(0,4,0)$,
設(shè)平面ADE與平面BCEF所成銳二面角的大小為α,
則$cosα=|{\frac{{\overrightarrow{n_1}•\overrightarrow{n_2}}}{{|{\overrightarrow{n_1}}||{\overrightarrow{n_1}}|}}}|=\frac{2×4}{3×4}=\frac{2}{3}$
因此,平面ADE與平面BCEF所成銳二面角的余弦值為$\frac{2}{3}$. …(12分)

點(diǎn)評 本題考查線面平行的證明,考查二面角的余弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知圓錐的底面半徑為1,高為$2\sqrt{2}$,則該圓錐的側(cè)面積為3π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖所示,45°的二面角的棱上有兩點(diǎn)A,B,直線AC,BD分別在這個(gè)二面角的兩個(gè)半平面內(nèi),且都垂直于AB,已知AC=1,AB=$\sqrt{3}$,BD=$\sqrt{2}$,求CD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知直線l1:mx-y=0,l2:x+my-2m-2=0.
(1)證明:m取任何實(shí)數(shù)時(shí),l1和l2的交點(diǎn)總在一個(gè)定圓C上;
(2)直線AB與(1)中的圓C相交于A,B兩點(diǎn).
①若弦AB被點(diǎn)P($\frac{1}{2}$,$\frac{1}{2}$)平分,求直線AB的方程;
②若直線AB經(jīng)過頂點(diǎn)(2,3),求使△ABC的面積取得最大值時(shí)的直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是棱AB、BC的中點(diǎn),則平面A1DE與平面C1DF所成二面角的余弦值為( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在四棱錐B-ACDE中,AE⊥平面ABC,CD∥AE,∠ABC=3∠BAC=90°,BF⊥AC于F,AC=4CD=4,AE=3.
(I)求證:BE⊥DF;
(II)求二面角B-DE-F的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在多面體ABCDEF中,CDEF為矩形,ABCD為直角梯形,平行CDEF⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=$\frac{1}{2}$CD=1,ED=$\sqrt{3}$,M為線段EA上動點(diǎn).
(Ⅰ)若M為EA中點(diǎn),求證:AC∥平面MDF;
(Ⅱ)線段EA上是否存在點(diǎn)M,使平面MDF與平面ABCD所成的銳二面角大小為$\frac{π}{3}$?若存在,求出AM的長度,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1-\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),在以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,圓C的方程為ρ=2$\sqrt{3}$sinθ.
(Ⅰ)寫出直線l的普通方程和圓C的直角坐標(biāo)方程;
(Ⅱ)若點(diǎn)P的直角坐標(biāo)為(1,0),圓C與直線l交于A、B兩點(diǎn),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知曲線C的極坐標(biāo)方程為ρ-4cosθ=0,以極點(diǎn)為原點(diǎn),極軸為x軸正半軸建立平面直角坐標(biāo)系,直線l過點(diǎn)M(3,0),傾斜角為$\frac{π}{6}$.
(1)求曲線C的直角坐標(biāo)方程與直線l的參數(shù)方程;
(2)設(shè)直線l與曲線C交于AB兩點(diǎn),求|MA|+|MB|.

查看答案和解析>>

同步練習(xí)冊答案