4.如圖,幾何體ABCA1B1C1中,面ABC是邊長為2的正三角形,AA1,BB1,CC1都垂直于面ABC,且AA1=2BB1=2CC1=2,D為B1C1的中點,E為A1D的中點.
(Ⅰ)求證:AE⊥面A1B1C1;
(Ⅱ)求BC1與面A1B1C1所成角的正弦值.

分析 (I)取BC的中點O,連結AO,OD,以O為原點就空間直角坐標系,求出$\overrightarrow{AE}$,$\overrightarrow{{B}_{1}{C}_{1}}$,$\overrightarrow{{A}_{1}{B}_{1}}$的坐標,利用數(shù)量積為0證明AE⊥B1C1,AE⊥A1B1,從而得出AE⊥面A1B1C1;
(II)由(I)可知$\overrightarrow{AE}$為平面A1B1C1的一個法向量,于是BC1與面A1B1C1所成角的正弦值等于|cos<$\overrightarrow{B{C}_{1}}$,$\overrightarrow{AE}$>|.

解答 證明:(I)取BC的中點O,連結AO,OD,則OD∥A1A,OA⊥BC.
∵AA1⊥平面ABC,∴OD⊥平面ABC.
以O為原點,以OC,OA,OD為坐標軸建立空間直角坐標系如圖所示:
則O(0,0,0),A(0,$\sqrt{3}$,0),A1(0,$\sqrt{3}$,2),B1(-1,0,1),C1(1,0,1),D(0,0,1),E(0,$\frac{\sqrt{3}}{2}$,$\frac{3}{2}$).
∴$\overrightarrow{AE}$=(0,-$\frac{\sqrt{3}}{2}$,$\frac{3}{2}$),$\overrightarrow{{B}_{1}{C}_{1}}$=(2,0,0),$\overrightarrow{{A}_{1}{B}_{1}}$=(-1,-$\sqrt{3}$,-1),
∴$\overrightarrow{AE}•\overrightarrow{{B}_{1}{C}_{1}}$=0,$\overrightarrow{AE}•\overrightarrow{{A}_{1}{B}_{1}}$=0,
∴AE⊥B1C1,AE⊥A1B1,又B1C1?平面A1B1C1,A1B1?平面A1B1C1,A1B1∩B1C1=B1,
∴AE⊥平面A1B1C1
(II)由(I)知$\overrightarrow{AE}$=(0,-$\frac{\sqrt{3}}{2}$,$\frac{3}{2}$)為平面A1B1C1的一個法向量,
∵$\overrightarrow{B{C}_{1}}$=(2,0,1),∴$\overrightarrow{B{C}_{1}}•\overrightarrow{AE}$=$\frac{3}{2}$,|$\overrightarrow{AE}$|=$\sqrt{3}$,|$\overrightarrow{B{C}_{1}}$|=$\sqrt{5}$,
∴cos<$\overrightarrow{B{C}_{1}}$,$\overrightarrow{AE}$>=$\frac{\overrightarrow{B{C}_{1}}•\overrightarrow{AE}}{|\overrightarrow{B{C}_{1}}||\overrightarrow{AE}|}$=$\frac{\sqrt{15}}{10}$.
∴BC1與面A1B1C1所成角的正弦值為$\frac{\sqrt{15}}{10}$.

點評 本題考查了線面垂直的判定,線面角的計算,空間向量的應用,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

2.已知數(shù)列{an}各項均不為0,其前n項和為Sn,且a1=1,Sn=$\frac{{{a_n}{a_{n+1}}}}{2}$,則S20=210.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知函數(shù)f(x)=Asin(2x+φ)+k(A>0,k>0)的最大值為4,最小值為2,且f(x0)=2,則f(x0+$\frac{π}{4}}$)=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.若點P,Q分別是曲線y=$\frac{x+4}{x}$與直線4x+y=0上的動點,則線段PQ長的最小值為$\frac{7\sqrt{17}}{17}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.長時間上網嚴重影響著學生的健康,某校為了解甲、乙兩班學生上網的時長,分別從這兩個班中隨機抽取6名同學進行調查,將他們平均每周上網時長作為樣本,統(tǒng)計數(shù)據(jù)如表:
甲班101215182436
乙班121622262838
如果學生平均每周上網的時長超過19小時,則稱為“過度上網”.
(1)從甲班的樣本中有放回地抽取3個數(shù)據(jù),求恰有1個數(shù)據(jù)為“過度上網”的概率;
(2)從甲班、乙班的樣本中各隨機抽取2名學生的數(shù)據(jù),記“過度上網”的學生人數(shù)為X,寫出X的分布列和數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=2(a+1)lnx-ax,g(x)=$\frac{1}{2}$x2-x.
(1)若a≥0,試判斷f(x)在定義域內的單調性;
(2)證明:若-1<a<7,則對任意x1,x2∈(1,+∞),且x1>x2,有$\frac{f({x}_{1})-f({x}_{2})}{g({x}_{1})-g({x}_{2})}$>-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,直三棱柱ABC-A1B1C1中,AB⊥AC,A1A=AB=AC,D是AB中點.
(1)記平面B1C1D∩平面A1C1CA=l,在圖中作出l,并說明畫法;
(2)求直線l與平面B1C1CB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知F是橢圓C:$\frac{x^2}{20}+\frac{y^2}{4}$=1的右焦點,P是C上一點,A(-2,1),當△APF周長最小時,其面積為( 。
A.4B.8C.$\sqrt{3}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.三角形的一邊長為13,這條邊所對應的角為60°,另外兩邊之比為4:3,則這個三角形的面積為( 。
A.39$\sqrt{3}$B.78$\sqrt{3}$C.39D.78

查看答案和解析>>

同步練習冊答案