若集合A={x|1≤3x≤81},B={x|log2(x2-x)>1},則A∩B=( 。
A、(2,4]
B、[2,4]
C、(-∞,0)∪[0,4]
D、(-∞,-1)∪[0,4]
考點:交集及其運算
專題:集合
分析:求出集合,利用集合的基本運算進行求解.
解答: 解:A={x|1≤3x≤81}{x|0≤x≤4},
B={x|log2(x2-x)>1}={x|x2-x>2}={x|x>2或x<-1},
則A∩B={x|2<x≤4},
故選:A
點評:本題主要考查集合的基本運算,要求熟練掌握集合的交并補運算,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若1,2,3,4,m這五個數(shù)的平均數(shù)為3,則這五個數(shù)的方差為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinθ+cosθ=t,-
2
≤t≤
2
,則sinθ cosθ的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=sin(π-ωx)cosωx+cos2ωx的最小正周期為π,求ω的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a=2 -
1
3
,b=log2
1
3
,c=log23,則( 。
A、a>b>c
B、z>c>b
C、c>b>a
D、c>a>b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,直三棱柱ABC-A1B1C1中,D、E分別為AB、BB1的中點.
(1)證明:BC1∥平面A1CD
(2)若AA1=AC=CB=2,AB=2
2
,求三棱錐A1-CDE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知球O的直徑為4,P,A,B,C為球面上四個點,P-ABC為正三棱錐,PA,PB,PC與平面ABC所成角均為60°則棱錐P-ABC體積為( 。
A、
3
3
4
B、
9
3
4
C、
3
3
2
D、
27
3
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知某幾何體的三視圖如圖所示,則它的體積是( 。
A、
3
B、
3
C、π
D、
π
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
5
+
y2
4
=1,過右焦點F2的直線l交橢圓于A、B兩點,若|AB|=
4
5
9
,求直線l的直線方程.

查看答案和解析>>

同步練習冊答案