4.(文)從4名男生和3名女生中任選3人參加交通文明志愿者活動,則所選3人中恰有一名女生的概率為$\frac{18}{35}$.

分析 利用枚舉法寫出從4名男生和3名女生中任選3人基本事件總數(shù),找出所選3人中恰有一名女生,利用古典概率計算公式求出概率.

解答 解:設(shè)4名男生分別為A、B、C、D,3名女生分別為1、2、3,
則從4名男生和3名女生中任選3人的方法種數(shù)為(ABC),(ABD),(ACD),(BCD),(AB1),(AB2),(AB3),(AC1),(AC2),(AC3),(AD1),(AD2),(AD3),(BC1),(BC2),(BC3),(BD1),(BD2),
(BD3),(CD1),(CD2),(CD3),(123),(12A),(12B),(12C),(12D),(13A),(13B),
(13C),(13D),(23A),(23B),(23C),(23D),(12D)共35種.
所選3人中恰有一名女生的18種,
所選3人中恰有一名女生的概率為$\frac{18}{35}$.
故答案為:$\frac{18}{35}$.

點評 本題考查了古典概型及其概率計算公式,解答的關(guān)鍵是枚舉時做到不重不漏,此題是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.下表是種產(chǎn)品銷售收入與銷售量之間的一組數(shù)據(jù):
銷售量x(噸)2356
銷售收入y(千元)78912
(1)求出回歸直線方程;
(2)根據(jù)回歸方程估計銷售量為7噸時的銷售收入.
參考數(shù)據(jù):2×7+3×8+5×9+6×12=155,$\left\{\begin{array}{l}{\widehat=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}}\\{\widehat{a}=\overline{y}-\widehat\overline{x}}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.一艘向正東航行的船,看見正北方向有兩個相距10海里的燈塔恰好與它在一條直線上,繼續(xù)航行半小時后,看見一燈塔在船的北偏西30°,另一燈塔在船的北偏西15°,則這艘船的速度是每小時( 。
A.5海里B.$5\sqrt{3}$海里C.10海里D.$10\sqrt{3}$海里

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.y與x之間的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$必定過( 。
A.(0,0)點B.($\overline{x}$,$\overline{y}$)點C.(0,$\overline{y}$)點D.($\overline{x}$,0)點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某校為了解學(xué)生一次考試后數(shù)學(xué)、物理兩個科目的成績情況,從中隨機抽取了25位考生的成績進行統(tǒng)計分析.25位考生的數(shù)學(xué)成績已經(jīng)統(tǒng)計在莖葉圖中,物理成績?nèi)缦拢?br />90    71    64     66   72   39    49   46    55    56   85    52    6l
80    66    67    78    70   51    65   42    73    77   58     67

(1)請根據(jù)數(shù)據(jù)在答題卡的莖葉圖中完成物理成績統(tǒng)計;
( 2)請根據(jù)數(shù)據(jù)在答題卡上完成數(shù)學(xué)成績的頻數(shù)分布表及數(shù)學(xué)成績的頻率分布直方圖;
數(shù)學(xué)成績的頻數(shù)分布表
數(shù)學(xué)成績分組[50,60)[60,70)[70,80)[80,90)[90,100)[100,110)[110,120]
頻數(shù)1237651
(3)設(shè)上述樣本中第i位考生的數(shù)學(xué)、物理成績分別為xi,yi(i=1,2,3,…,25).通過對樣本數(shù)據(jù)進行初步處理發(fā)現(xiàn):數(shù)學(xué)、物理成績具有線性相關(guān)關(guān)系,得到:
$\overline{x}$=$\frac{1}{25}$$\sum_{i=1}^{25}{x}_{i}$=86,$\overline{y}$=$\frac{1}{25}$$\sum_{i=1}^{25}$yi=64,$\sum_{i=1}^{25}$(xi-$\overline{x}$)(yi-$\overline{y}$)=4698,$\sum_{i=1}^{25}$(xi-$\overline{x}$)2=5524,$\frac{4698}{5524}$≈0.85
求y關(guān)于x的線性回歸方程,并據(jù)此預(yù)測當(dāng)某考生的數(shù)學(xué)成績?yōu)?00分時,該考生的物理成績(精確到1分).附:回歸直線方程的斜率和截距的最小二乘估計公式分別為:
$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.對大于或等于2的自然數(shù)的3次方可以做如下分解:23=3+5,33=7+9+11,43=13+15+17+19,…,根據(jù)上述規(guī)律,103的分解式中,最大的數(shù)是109.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)y=f(x)的圖象在點M(1,f(1))處的切線方程是y=$\frac{1}{2}$x+2,則函數(shù)g(x)=xf(x)在點N(1,g(1))處的切線方程為( 。
A.6x-2y-1=0B.3x-2y+2=0C.3x+y-5=0D.6x-y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.通過市場調(diào)查,得到某種產(chǎn)品的資金投入x(萬元)與獲得的利潤y(萬元)的數(shù)據(jù),如表所示:
資金投入x23456
利潤y23569
(Ⅰ)畫出數(shù)據(jù)對應(yīng)的散點圖;
(Ⅱ)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求線性回歸直線方程$\stackrel{∧}{y}$=bx+a;
(Ⅲ)現(xiàn)投入資金10萬元,求獲得利潤的估計值為多少萬元?
(參考公式:$\left\{\begin{array}{l}{\stackrel{∧}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}(x-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}}\\{\stackrel{∧}{a}=\stackrel{∧}{y}-b\stackrel{∧}{x}}\end{array}\right.$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在△ABC中,AB=2,BC=3$\sqrt{3}$,∠ABC=30°,AD為BC邊上的高,若$\overrightarrow{AD}=λ\overrightarrow{AB}+μ\overrightarrow{AC}$,則$\frac{λ}{μ}$等于( 。
A.2B.$\frac{1}{2}$C.$\frac{2}{3}$D.$2\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊答案