16.在直用坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=3t-3\\ y=4t-9\end{array}\right.$(t為參數(shù)).在以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,圓心A的極坐標(biāo)為(2,$\frac{2π}{3}}$),圓A的半徑為3.
(1)直接寫出直線l的直角坐標(biāo)方程,圓A的極坐標(biāo)方程;
(2)設(shè)B是線l上的點(diǎn),C是圓A上的點(diǎn),求|BC|的最小值.

分析 (1)消去參數(shù)t,即可得到直線的普通方程,利用極坐標(biāo),求解圓的極坐標(biāo)方程.
(2)利用直線與圓的圓心的距離與半徑的關(guān)系求解|BC|的最小值.

解答 解:(1)直線l的坐標(biāo)方程為4x-3y-15=0,
圓A的極坐標(biāo)方程為${ρ^2}+2ρcosθ-2\sqrt{3}ρsinθ-5=0$.
(2)圓心A的直角坐標(biāo)為$A({-1,\sqrt{3}}),A$直線l的距離$d=\frac{{19+3\sqrt{3}}}{5}$,
根據(jù)圓的幾何意義得|BC|的最小值等于$d-3=\frac{{4+3\sqrt{3}}}{5}$.
∴|BC|的最小值為$\frac{{4+3\sqrt{3}}}{5}$.

點(diǎn)評 本題考查極坐標(biāo)與參數(shù)方程的綜合應(yīng)用,點(diǎn)到直線的距離公式的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如圖,棱長為3的正方體的頂點(diǎn)A在平α上,三條棱AB、AC、AD都在平面α的同側(cè).若頂點(diǎn)B,C到平面α的距離分別為1,$\sqrt{2}$.建立如圖所示的空間直角坐標(biāo)系,設(shè)平面α的一個法向量為(x0,y0,z0),若x0=1,則y0=$\sqrt{2}$,z0=$\sqrt{6}$,且頂點(diǎn)D到平面α的距離是$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖,邊長為2的正方形ABCD中,BE=BF=$\frac{1}{4}$BC,將△AED,△DCF分別沿DE,DF折起,使A,C兩點(diǎn)重合于A′點(diǎn),則三棱錐A′-EFD的體積為( 。
A.$\frac{{\sqrt{21}}}{12}$B.$\frac{{\sqrt{17}}}{12}$C.$\frac{{\sqrt{21}}}{6}$D.$\frac{{\sqrt{17}}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.“a>2”是“對數(shù)函數(shù)f(x)=logax為增函數(shù)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.現(xiàn)在有10張獎券,8張2元的,2張5元的,某人從中隨機(jī)無放回地抽取3張獎券,則此人得獎金額的數(shù)學(xué)期望為( 。
A.6B.$\frac{39}{5}$C.$\frac{41}{5}$D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={x|y=lgx},B={-2,-1,0,1,2},則(∁RA)∩B=( 。
A.{-2,-1}B.{-2,-1,0}C.{0,1,2}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知x,y滿足約束條件$\left\{\begin{array}{l}{x-y>2}\\{x+y≤2}\\{y≥-2}\end{array}\right.$,則z=3x+y的取值范圍為( 。
A.[-2,10)B.(-2,10]C.[6,10]D.(6,10]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若某程序框圖如圖所示,則輸出的S的值是( 。
A.0B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{2}}}{2}$+1D.$\sqrt{2}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知集合A={x|${\frac{x-2}{x+1$≤0},B={-1,0,1,2,3},則A∩B等于( 。
A.{-1,0,1}B.{1,2,3}C.{0,1,2}D.{1,2,3,4}

查看答案和解析>>

同步練習(xí)冊答案