8.已知x,y滿足約束條件$\left\{\begin{array}{l}{x-y>2}\\{x+y≤2}\\{y≥-2}\end{array}\right.$,則z=3x+y的取值范圍為(  )
A.[-2,10)B.(-2,10]C.[6,10]D.(6,10]

分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.

解答 解:由約束條件$\left\{\begin{array}{l}{x-y>2}\\{x+y≤2}\\{y≥-2}\end{array}\right.$作出可行域如圖,

化目標(biāo)函數(shù)為y=-3x+z,
由圖可知,當(dāng)直線y=-3x+z過(guò)A時(shí),z取最大值,
由$\left\{\begin{array}{l}{x+y=2}\\{y=-2}\end{array}\right.$,得A(4,-2),此時(shí)zmax=3×4-2=10;
當(dāng)直線y=-3x+z過(guò)點(diǎn)B時(shí),由$\left\{\begin{array}{l}{x-y=2}\\{y=-2}\end{array}\right.$,解得B(0,-2),故z>3×0-2=-2.
綜上,z=3x+y的取值范圍為(-2,10].
故選:B.

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知“0<t<m(m>0)”是“函數(shù)f(x)=-x2-tx+3t在區(qū)間(0,2)上只有一個(gè)零點(diǎn)”的充分不必要條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.某地為了調(diào)查職業(yè)滿意度,決定用分層抽樣的方法從公務(wù)員、教師、自由職業(yè)者三個(gè)群體的相關(guān)人員中,抽取若干人組成調(diào)查小組,有關(guān)數(shù)據(jù)見如表:
相關(guān)人員數(shù)抽取人數(shù)
公務(wù)員32x
教師48y
自由職業(yè)者644
則調(diào)查小組的總?cè)藬?shù)為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在直用坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=3t-3\\ y=4t-9\end{array}\right.$(t為參數(shù)).在以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,圓心A的極坐標(biāo)為(2,$\frac{2π}{3}}$),圓A的半徑為3.
(1)直接寫出直線l的直角坐標(biāo)方程,圓A的極坐標(biāo)方程;
(2)設(shè)B是線l上的點(diǎn),C是圓A上的點(diǎn),求|BC|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)i為虛數(shù)單位,若復(fù)數(shù)z滿足(2+i)z=5i,則z的虛部為( 。
A.2B.-2C.2iD.-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.(1)已知函數(shù)f(x)=|x+2a|+|x-$\frac{2}{a}$|≥5(a>0)對(duì)任意x∈R恒成立,求實(shí)數(shù)a的取值范圍;
(2)求函數(shù)g(x)=3$\sqrt{x-3}$+4$\sqrt{4-x}$的最大值及g(x)取最大值時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.一張儲(chǔ)蓄卡的密碼共有6位數(shù)字,每位數(shù)字都可以從0~9這10個(gè)數(shù)字中任選一個(gè),某人在銀行自動(dòng)提款機(jī)上取錢時(shí),忘記了密碼的最后一個(gè)數(shù)字,如果他記得密碼的最后一位是偶數(shù),則它恰好在第2次按對(duì)的概率是$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為:$\left\{\begin{array}{l}x=3cost\\ y=2+2sint\end{array}$(t為參數(shù)),P是C上任意一點(diǎn),以x軸的非負(fù)半軸為極軸,原點(diǎn)為極點(diǎn)建立極坐標(biāo)系,并在兩坐標(biāo)系中取相同的長(zhǎng)度單位.
(Ⅰ)求曲線C的直角坐標(biāo)方程;
(Ⅱ)直線l的極坐標(biāo)方程為θ=$\frac{π}{4}$(ρ∈R),求P到直線l的最大距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知斜三棱柱ABC-A1B1C1,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰為AC的中點(diǎn)D,又知BA1⊥AC1
(1)求證:AC1⊥平面A1BC;
(2)求AC1 與平面BCC1 B1 所成角的正弦值;
(3)求二面角A-A1 B-C1 的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案