13.已知函數(shù)f(x)=x(1+m|x|),關(guān)于x的不等式f(x)>f(x+m)的解集記為T,若區(qū)間[-$\frac{1}{2}$,$\frac{1}{2}}$]⊆T,則實數(shù)m的取值范圍是(  )
A.($\frac{{1-\sqrt{5}}}{2}$,0)B.($\frac{{1-\sqrt{3}}}{2}$,0)C.(-∞,$\frac{{1-\sqrt{5}}}{2}$)D.($\frac{{1-\sqrt{5}}}{2}$,0)∪(0,$\frac{{1+\sqrt{3}}}{2}$)

分析 由題意可得,當(dāng)m=0,顯然不滿足條件;在[-$\frac{1}{2}$,$\frac{1}{2}$]上,函數(shù)y=f(x-m)的圖象應(yīng)在函數(shù)y=f(x)的圖象的下方當(dāng)a=0或 a>0時,檢驗不滿足條件.當(dāng)a<0時,應(yīng)有f(-$\frac{1}{2}$+a)<f(-$\frac{1}{2}$),化簡可得 a2-a-1<0,由此求得a的范圍

解答 解:f(x)=x(1+m|x|)=$\left\{\begin{array}{l}{x+m{x}^{2},x≥0}\\{x-m{x}^{2},x<0}\end{array}\right.$
①若m=0,則不等式即f(x)>f(x ),顯然不成立.
②若m>0,函數(shù)f(x)=$\left\{\begin{array}{l}{x+m{x}^{2},x≥0}\\{x-m{x}^{2},x<0}\end{array}\right.$,在R上是增函數(shù),如右圖所示:
由f(x)>f(x+m),可得x>x+m,m<0,故m無解.
③若m<0,函數(shù)y=f(x+m)的圖象是把函數(shù)y=f(x)的圖象向右平移-m個單位得到的,
由題意可得,當(dāng)x∈[-$\frac{1}{2}$,$\frac{1}{2}$]時,函數(shù)y=f(x+m)的圖象在函數(shù) y=f(x)的圖象的下方,
如下圖所示:

只要f(-$\frac{1}{2}$-m)<f(-$\frac{1}{2}$)即可,
即m(-$\frac{1}{2}$-m)2+(-$\frac{1}{2}$-m)<-m(-$\frac{1}{2}$)2-$\frac{1}{2}$,
即 m2-m-1<0,求得$\frac{1-\sqrt{5}}{2}$<m<$\frac{1+\sqrt{5}}{2}$,
綜合可得,$\frac{1-\sqrt{5}}{2}$<m<0,
故選:A.

點評 本題考查函數(shù)的單調(diào)性、二次函數(shù)的性質(zhì)、不等式等知識,考查數(shù)形結(jié)合思想、分類討論思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知拋物線y2=2px(p>0)上一點M到焦點F的距離等于2p,則直線MF的斜率為( 。
A.$±\frac{{\sqrt{3}}}{3}$B.$±\frac{3}{4}$C.±1D.$±\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知虛數(shù)z滿足2z-$\overline{z}$=1+9i,則$\overline{z}$=1-3i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知a,b是異面直線,且a⊥b,$\overrightarrow{e}$1,$\overrightarrow{e}$2分別為取自直線a,b上的單位向量,且,$\overrightarrow a$=2$\overrightarrow{e}$1+3$\overrightarrow{e}$2,$\overrightarrow b$=k$\overrightarrow{e}$1-4$\overrightarrow{e}$2,$\overrightarrow a$⊥$\overrightarrow b$,則實數(shù)k的值為(  )
A.-6B.6C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.甲、乙兩名同學(xué)八次數(shù)學(xué)測試成績?nèi)缜o葉圖所示,則甲同學(xué)成績的眾數(shù)與乙同學(xué)成績的中位數(shù)依次為(  )
A.85,86B.85,85C.86,85D.86,86

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)整數(shù)x,y滿足約束條件,$\left\{\begin{array}{l}x≥0\\ y≥x\\ 8x+5y≤40\end{array}\right.$,則$\frac{x+2y+3}{x+1}$取值范圍是( 。
A.[2,6]B.[3,11]C.[$\frac{11}{3}$,8]D.[3,19]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.上海磁懸浮列車工程西起龍陽路地鐵站,東至浦東國際機場,全線長35km.已知運行中磁懸浮列車每小時所需的能源費用(萬元)和列車速度(km/h)的立方成正比,當(dāng)速度為100km/h時,能源費用是每小時0.04萬元,其余費用(與速度無關(guān))是每小時5.12萬元,已知最大速度不超過C(km/h)(C為常數(shù),0<C≤500).
(1)求列車運行全程所需的總費用y與列車速度v的函數(shù)關(guān)系,并求該函數(shù)的定義域;
(2)當(dāng)列車速度為多少時,運行全程所需的總費用最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.橢圓C焦點在y軸上,離心率為$\frac{\sqrt{3}}{2}$,上焦點到上頂點距離為2-$\sqrt{3}$.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)直線l與橢圓C交與P,Q兩點,O為坐標(biāo)原點,△OPQ的面積S△OPQ=1,則|$\overrightarrow{OP}$|2+|$\overrightarrow{OQ}$|2是否為定值,若是求出定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.點(3,4)到直線$\frac{x}{3}$+$\frac{y}{4}$=0的距離是( 。
A.3B.4C.5D.$\frac{24}{5}$

查看答案和解析>>

同步練習(xí)冊答案