11.執(zhí)行如圖所示的程序框圖,輸出s的值為( 。
A.8B.9C.27D.36

分析 根據(jù)已知的程序框圖可得,該程序的功能是利用循環(huán)結(jié)構(gòu)計算并輸出變量S的值,模擬程序的運行過程,可得答案.

解答 解:當(dāng)k=0時,滿足進(jìn)行循環(huán)的條件,故S=0,k=1,
當(dāng)k=1時,滿足進(jìn)行循環(huán)的條件,故S=1,k=2,
當(dāng)k=2時,滿足進(jìn)行循環(huán)的條件,故S=9,k=3,
當(dāng)k=3時,不滿足進(jìn)行循環(huán)的條件,
故輸出的S值為9,
故選:B

點評 本題考查的知識點是程序框圖,當(dāng)循環(huán)次數(shù)不多,或有規(guī)律可循時,可采用模擬程序法進(jìn)行解答.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)f(x)是定義在R上且周期為2的函數(shù),在區(qū)間[-1,1)上,f(x)=$\left\{\begin{array}{l}{x+a,-1≤x<0}\\{|\frac{2}{5}-x|,0≤x<1}\end{array}\right.$,其中a∈R,若f(-$\frac{5}{2}$)=f($\frac{9}{2}$),則f(5a)的值是-$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某個西瓜開花結(jié)果時的直徑是2厘米,而成熟后的直徑是15厘米,這個西瓜成熟時的體積它開花結(jié)果時體積的幾倍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.將函數(shù)y=sin(2x-$\frac{π}{3}$)圖象上的點P($\frac{π}{4}$,t)向左平移s(s>0)個單位長度得到點P′,若P′位于函數(shù)y=sin2x的圖象上,則( 。
A.t=$\frac{1}{2}$,s的最小值為$\frac{π}{6}$B.t=$\frac{\sqrt{3}}{2}$,s的最小值為$\frac{π}{6}$
C.t=$\frac{1}{2}$,s的最小值為$\frac{π}{3}$D.t=$\frac{\sqrt{3}}{2}$,s的最小值為$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.A,B,C三個班共有100名學(xué)生,為調(diào)查他們的體育鍛煉情況,通過分層抽樣獲得了部分學(xué)生一周的鍛煉時間,數(shù)據(jù)如表(單位:小時):
A班6    6.5    7    7.5    8
B班6     7    8     9     10    11    12
C班3    4.5   6    7.5     9    10.5    12    13.5
(Ⅰ)試估計C班的學(xué)生人數(shù);
(Ⅱ)從A班和C班抽出的學(xué)生中,各隨機(jī)選取一個人,A班選出的人記為甲,C班選出的人記為乙.假設(shè)所有學(xué)生的鍛煉時間相對獨立,求該周甲的鍛煉時間比乙的鍛煉時間長的概率;
(Ⅲ)再從A,B,C三班中各隨機(jī)抽取一名學(xué)生,他們該周鍛煉時間分別是7,9,8.25(單位:小時),這3個新數(shù)據(jù)與表格中的數(shù)據(jù)構(gòu)成的新樣本的平均數(shù)記為μ1,表格中數(shù)據(jù)的平均數(shù)記為μ0,試判斷μ0和μ1的大小.(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)=$\frac{x}{x-1}$(x≥2)的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如果實數(shù)x,y滿足$\left\{\begin{array}{l}{x+y-3≤0}\\{x-2y-3≤0}\\{x≥1}\end{array}\right.$,目標(biāo)函數(shù)z=2x+y的最大值6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.某人得到一條短消息后用2分鐘時間通過手機(jī)發(fā)給兩個好友,這兩人又用同樣的時間和方式將消息發(fā)給各自兩個好友,如此下去,18分鐘后知道這條消息的人數(shù)有1023.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}的首項為1,Sn為數(shù)列{an}的前n項和,Sn+1=qSn+1,其中q>0,n∈N+
(Ⅰ)若a2,a3,a2+a3成等差數(shù)列,求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)雙曲線x2-$\frac{{y}^{2}}{{{a}_{n}}^{2}}$=1的離心率為en,且e2=2,求e12+e22+…+en2

查看答案和解析>>

同步練習(xí)冊答案