16.已知$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow$=(cosx,cosx),f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(1)若tanx=2,求f(x) 的值;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

分析 (1)先根據(jù)向量的坐標的數(shù)量積公式得到f(x),再根據(jù)同角的三角形函數(shù)的關(guān)系即可求出答案,
(2)根據(jù)二倍角公式和兩角和的正弦公式得到f(x)=$\frac{\sqrt{2}}{2}$sin(2x+$\frac{π}{4}$)-$\frac{1}{2}$,再根據(jù)正弦函數(shù)的性質(zhì)即可求出單調(diào)增區(qū)間

解答 解:(1)∵$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow$=(cosx,cosx),
∴f(x)=$\overrightarrow{a}$•$\overrightarrow$=sinxcosx+cos2x=$\frac{sinxcosx+co{s}^{2}x}{si{n}^{2}x+co{s}^{2}x}$=$\frac{tanx+2}{ta{n}^{2}x+1}$=$\frac{2+2}{{2}^{2}+1}$=$\frac{4}{5}$;
(2)f(x)=$\overrightarrow{a}$•$\overrightarrow$=sinxcosx+cos2x=$\frac{1}{2}$sin2x+$\frac{1}{2}$cos2x-$\frac{1}{2}$=$\frac{\sqrt{2}}{2}$sin(2x+$\frac{π}{4}$)-$\frac{1}{2}$,
∴-$\frac{π}{2}$+2kπ≤2x+$\frac{π}{4}$≤$\frac{π}{2}$+2kπ,k∈Z,
∴-$\frac{3π}{8}$+kπ≤x≤$\frac{π}{8}$+kπ,k∈Z,
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為[-$\frac{3π}{8}$+kπ,$\frac{π}{8}$+kπ],k∈Z

點評 本題考查了向量的坐標的數(shù)量積公式和三角形函數(shù)的化簡以及性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)點P是曲線y=2x2上的一個動點,曲線y=2x2在點P處的切線為l,過點P且與直線l垂直的直線與曲線y=2x2的另一交點為Q,則PQ的最小值為$\frac{3\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.某正三棱柱(底面是正三角形的直棱柱)的正視圖和俯視圖如圖所示.若它的體積為2$\sqrt{3}$,則它的側(cè)視圖面積為(  )
A.2$\sqrt{3}$B.3C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,角A,B,C所對的邊分別是a,b,c,且a2=3bc.
(Ⅰ)若sinA=sinC,求cosA;
(Ⅱ)若a=3,求△ABC的周長的最小值..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.給出以下結(jié)論:
①直線l1,l2的傾斜角分別為α1,α2,若l1⊥l2,則|α12|=90°;
②對任意角θ,向量$\overrightarrow{e_1}$=(cosθ,sinθ)與$\overrightarrow{e_2}$=(cosθ-$\sqrt{3}$sinθ,$\sqrt{3}$cosθ+sinθ)的夾角為$\frac{π}{3}$;
③若△ABC滿足$\frac{a}{cosB}$=$\frac{cosA}$,則△ABC一定是等腰三角形;
④對任意的正數(shù)a,b,都有1<$\frac{{\sqrt{a}+\sqrt}}{{\sqrt{a+b}}}$≤$\sqrt{2}$.
其中錯誤結(jié)論的編號是③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)函數(shù)y=f(x)是定義在(0,+∞)上的減函數(shù),并且滿足f(2)=1,f($\frac{x}{y}$)=f(x)-f(y).
(1)求f(1)和f($\frac{1}{4}$)的值;
(2)如果f(3x)+f(3x-2)<3,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知集合A={x|3≤x<7},B={x|2<x<10},全集為實數(shù)集R
(1)求A∪B
(2)求(∁RA)∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.下列命題中,
①若p、q為兩個命題,則“p且q為真”是“p或q為真”的必要不充分條件;
②若p為:?x∈R,x 2+2x+2≤0,則¬p為:?x∈R,x 2+2x+2>0;
③若橢圓 $\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{25}$=1的兩焦點為F 1、F 2,且弦AB過F 1點,則△ABF 2的周長為16.
正確命題的序號是②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若復(fù)數(shù)z滿足z2+2z=-10,則|z|=( 。
A.$\sqrt{7}$B.$2\sqrt{2}$C.3D.$\sqrt{10}$

查看答案和解析>>

同步練習(xí)冊答案