20.已知sin2θ=$\frac{3}{7}$,則cos2(θ-$\frac{π}{4}$)的值是( 。
A.$\frac{2}{7}$B.$\frac{3}{7}$C.$\frac{4}{7}$D.$\frac{5}{7}$

分析 由條件利用二倍角的余弦公式求得cos2(θ-$\frac{π}{4}$)的值.

解答 解:∵sin2θ=$\frac{3}{7}$,則cos2(θ-$\frac{π}{4}$)=$\frac{1+cos(2θ-\frac{π}{2})}{2}$=$\frac{1+sin2θ}{2}$=$\frac{5}{7}$,
故選:D.

點(diǎn)評(píng) 本題主要考查二倍角的余弦公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若關(guān)于x的不等式xlnx+x-kx+3k>0對(duì)任意x>1恒成立,則整數(shù)k等于0,1,2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.如圖所示是一個(gè)幾何體的三視圖,則這個(gè)幾何體的外接球的表面積為32π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知命題p:y=x+m-2的圖象不經(jīng)過(guò)第二象限,命題q:方程x2+$\frac{{y}^{2}}{1-m}$=1表示焦點(diǎn)在x軸上的橢圓.
(Ⅰ)試判斷p是q的什么條件;
(Ⅱ)若p∧q為假命題,p∨q為真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.如圖,在半徑為1的半圓內(nèi),放置一個(gè)邊長(zhǎng)為$\frac{1}{2}$的正方形ABCD,向半圓內(nèi)任取一點(diǎn),則該點(diǎn)落在正方形內(nèi)的槪率為( 。
A.$\frac{1}{π}$B.$\frac{1}{2π}$C.$\frac{2}{π}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)集合A={x|-3<x<4},集合B={x|x<log29},則A∪B等于(  )
A.(-3,log29)B.(-3,4)C.(-∞,log29)D.(-∞,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,已知四棱錐P-ABCD的底面是菱形,∠BCD=60°,AB=PB=PD=2,PC=$\sqrt{3}$,AC與BD交于O點(diǎn),E,H分別為PA,OC的中點(diǎn).
(1)求證:PH⊥平面ABCD;
(2)求直線CE與平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下列結(jié)論正確的是( 。
A.當(dāng)x>0且x≠1時(shí),lgx+$\frac{1}{lgx}$≥2B.x>0時(shí),6-x-$\frac{4}{x}$的最大值是2
C.$\frac{{x}^{2}+5}{\sqrt{{x}^{2}+4}}$的最小值是2D.當(dāng)x∈(0,π)時(shí),sinx+$\frac{4}{sinx}$≥4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{4x-4(x≤1)}\\{{x}^{2}-4x+3(x>1)}\end{array}\right.$,則f(2)=(  )
A.4B.0C.-1D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案