在長方體OABC-O1A1B1C1中,|OA|=2,|AB|=3,|AA1|=2,E是BC的中點,建立空間直角坐標系,用向量方法解決下列問題.
(1)求直線AO1與B1E所成的角的余弦值;
(2)作O1D⊥AC于D,求點O1到點D的距離.
考點:點、線、面間的距離計算,異面直線及其所成的角
專題:空間位置關(guān)系與距離,空間角
分析:(1)以O(shè)為原點,OA為x軸,OC為y軸,OO1為z軸,建立空間直角坐標系,利用向量法能求出直線AO1與B1E所成的角的余弦值.
(2)求出
AO1
=(-2,0,2),
AC
=(-2,3,0),由向量法得到點O1到點D的距離d=|
AO1
|•
1-[cos<
AO1
AC
>]
2
,由此能求出結(jié)果.
解答: 解:(1)以O(shè)為的點,OA為x軸,OC為y軸,OO1為z軸,
建立空間直角坐標系,
∵在長方體OABC-O1A1B1C1中,|OA|=2,|AB|=3,|AA1|=2,
E是BC的中點,
∴A(2,0,0),O1(0,0,2),
AO1
=(-2,0,2),
B1(2,3,2),E(1,3,0),
B1E
=(-1,0,-2),
∴|cos<
AO1
,
B1E
>|=|
2+0-4
8
5
|=
10
10

直線AO1與B1E所成的角的余弦值為
10
10

(2)A(2,0,0),O1(0,0,2),C(0,3,0),
AO1
=(-2,0,2),
AC
=(-2,3,0),
∴點O1到點D的距離d=|
AO1
|•
1-[cos<
AO1
,
AC
>]
2

=2
2
1-(
4
2
2
×
13
)2

=
2
286
13
點評:本題考查異面直線所成角的余弦值的求法,考查空間兩點間距離的求法,是中檔題,解題時要注意向量法的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

與圓C1:(x+3)2+y2=1,圓C2:(x-3)2+y2=9同時外切的動圓圓心的軌跡方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
4
+y2=1的焦點為F1,F(xiàn)2,若點P在橢圓上,且滿足|PO|2=|PF1|•|PF2|(其中O為坐標原點),則稱點P為“★點”,那么該橢圓上“★點”的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=Asin(ωx+φ)+B(A>0,ω>0,|φ|<
π
2
)的最小正周期為T,且在一個周期內(nèi)的圖象如圖所示,
(1)求函數(shù)的解析式;
(2)若函數(shù)g(x)=f(mx)+1(m>0)的圖象關(guān)于點M(
3
,0)對稱,且在區(qū)間[0,
π
2
]上不是單調(diào)函數(shù),求m的取值所構(gòu)成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P在橢圓
x2
9
+
y2
5
=1上,且點P不在x軸上,A,B為橢圓的左、右頂點,直線PA與y軸交于點C,直線BC,PB的斜率分別為kBC,kPB,則kBC2+kPB2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tan2α+6tanα+7=0,tan2β+6tanβ+7=0,α,β∈(0,π)且α≠β,求α+β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某旅游景點為了增加人氣,吸引游客,特推出一系列活動.其中有一項活動是:凡購買該景點門票的游客,可參加一次抽獎:擲兩枚6個面分別標有數(shù)字1,2,3,4,5,6的正方體骰子,點數(shù)之和為12點獲一等獎,獎品價值120元;點數(shù)之和為11點或10點獲二等獎,獎品價值60元;點數(shù)之和為9點或8點獲三等獎,獎品價值20元;點數(shù)之和小于8點的不得獎.
(1)求同行的兩位游客中一人獲一等獎、一人獲二等獎的概率;
(2)設(shè)一位游客在該景點處獲獎的獎品價值為X,求X的分布列及數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,△ABC的外接圓圓心為O,已知|
AB
|=3,|
BC
|=5,則
OB
AC
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x+
1
x
|-|x-
1
x
|.
(1)作出函數(shù)f(x)的圖象,并求當x>0時ax>f(x)恒成立的a取值范圍;
(2)關(guān)于x的方程kf2(x)-3kf(x)+6(k-5)=0有解,求實數(shù)k的取值范圍;
(3)關(guān)于x的方程f2(x)+m|f(x)|+n=0(m,n∈R)恰有6個不同的實數(shù)解,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案