A. | 2 | B. | 2$\sqrt{2}$ | C. | 6 | D. | 8 |
分析 可設(shè)x=2cosα,y=2sinα(0<α≤2π),代入原式,運(yùn)用二倍角的正弦、余弦公式,以及兩角差的正弦公式,結(jié)合正弦函數(shù)的值域,即可得到所求最大值.
解答 解:由x2+y2=4,
可設(shè)x=2cosα,y=2sinα(0<α≤2π),
則x2-2$\sqrt{3}$xy-y2=4cos2α-8$\sqrt{3}$sinαcosα-4sin2α
=4cos2α-4$\sqrt{3}$sin2α=8($\frac{1}{2}$cos2α-$\frac{\sqrt{3}}{2}$sin2α)
=-8sin(2α-$\frac{π}{6}$),
當(dāng)sin(2α-$\frac{π}{6}$)=-1,即α=$\frac{5π}{6}$時(shí),取得最大值8.
故選:D.
點(diǎn)評 本題考查最值的求法,注意運(yùn)用三角換元法,以及正弦函數(shù)的值域,考查化簡整理的運(yùn)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{3}$π | B. | $\frac{2\sqrt{2}}{3}$π | C. | $\frac{4\sqrt{2}}{3}$π | D. | $\frac{8\sqrt{2}}{3}$π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若向量$\overrightarrow a$,$\overrightarrow b$共線則向量$\overrightarrow a$,$\overrightarrow b$的方向相同 | |
B. | 若$\overrightarrow a$∥$\overrightarrow b$,$\overrightarrow b$∥$\overrightarrow c$則$\overrightarrow a$∥$\overrightarrow c$ | |
C. | 向量$\overrightarrow{AB}$與向量$\overrightarrow{CD}$是共線向量則A,B,C,D四點(diǎn)在一條直線上 | |
D. | 若$\overrightarrow a$=$\overrightarrow b$,$\overrightarrow b$=$\overrightarrow c$則$\overrightarrow a$=$\overrightarrow c$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 14 | C. | 28 | D. | 27 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{39}$ | B. | $\frac{7}{78}$ | C. | $\frac{7}{76}$ | D. | $\frac{5}{81}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com