10.期初考試,某班數(shù)學(xué)優(yōu)秀率為70%,語文優(yōu)秀率為25%,則語文、數(shù)學(xué)兩門都優(yōu)秀的百分率至少為13.5%.

分析 有條件利用相互獨立事件的概率乘法公式,求得語文、數(shù)學(xué)兩門都優(yōu)秀的百分率.

解答 解:數(shù)學(xué)優(yōu)秀率為70%,語文優(yōu)秀率為25%,
則語文、數(shù)學(xué)兩門都優(yōu)秀的百分率至少為70%×25%=13.5%,
故答案為:13.5%.

點評 本題主要考查相互獨立事件的概率乘法公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知直線l1:2x+y-2=0,l2:ax+4y+1=0,若l1∥l2,則a的值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)g(x)=(2-a)lnx,h(x)=lnx+ax2(a∈R),令f(x)=g(x)+h′(x),其中h′(x)是函數(shù)h(x)的導(dǎo)函數(shù).
(Ⅰ)當(dāng)a=0時,求f(x)的極值;
(Ⅱ)當(dāng)-8<a<-2時,若存在x1,x2∈[1,3],使得|f(x1)-f(x2)|>(m+ln3)a-2ln3+$\frac{2}{3}$ln(-a) 恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某人駕車遇到險情而緊急制動并以速度v(t)=120-60t(t為事件單位s)形式至停止,則從開始制動到汽車完全停止所形式的距離(單位:m)為(  )
A.100B.150C.120D.160

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若正數(shù)x,y滿足x+2y=xy,則x+2y的最小值是( 。
A.$\frac{24}{5}$B.5C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知某棱錐的三視圖如圖所示,俯視圖為正方形,根據(jù)圖中所給的數(shù)據(jù),那么該棱錐外接球的體積是$\frac{8\sqrt{2}}{3}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)集合$A=\{x|\frac{2}{x}>1\},B=\{y|y=\sqrt{{2^x}-1},x∈A\}$,則A∩(∁RB)等于( 。
A.$(\sqrt{3},2)$B.$[\sqrt{3},2)$C.$(0,\sqrt{3})$D.(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.化簡:
(1)$\frac{{{{sin}^2}(α+π)cos(π+α)cos(-α-2π)}}{{tan(π+α){{sin}^3}(\frac{π}{2}+α)sin(-α-2π)}}$;
(2)$\frac{{\sqrt{1+2sin{{20}°}cos{{160}°}}}}{{sin{{160}°}-\sqrt{1-{{sin}^2}{{20}°}}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知圓C:(x-3)2+(y+1)2=25,過點M(0,4)作直線l與圓C交于點A,B,
(1)若AB=8,求直線l的方程.
(2)當(dāng)直線l的斜率為-2時,在直線l上求一點P,使過點P的切線長等于PM.
(3)AB的中點為E,在平面上找一定點F,使EF的長為定值,并求出這個定值.

查看答案和解析>>

同步練習(xí)冊答案