2.在△ABC中,若2b=a+c,B=30°,且該三角形的面積為$\frac{3}{2}$,則b=1+$\sqrt{3}$.

分析 由已知及三角形面積公式可求ac=6,4b2=a2+c2+2ac,由余弦定理得b2=a2+c2-2ac×$\frac{\sqrt{3}}{2}$,兩式相減得可得b2=4+2$\sqrt{3}$,即可得解b的值.

解答 解:在△ABC中,∵B=30°,△ABC的面積是$\frac{3}{2}$,
∴S=$\frac{1}{2}$acsin30°=$\frac{1}{2}$×$\frac{1}{2}$ac=$\frac{3}{2}$,
即ac=6,
∵2b=a+c,
∴4b2=a2+c2+2ac,①
則由余弦定理得b2=a2+c2-2ac×$\frac{\sqrt{3}}{2}$,②
∴兩式相減得3b2=2ac+2ac×$\frac{\sqrt{3}}{2}$=12+6$\sqrt{3}$,
即b2=4+2$\sqrt{3}$,
即b=1+$\sqrt{3}$.
故答案為:1+$\sqrt{3}$.

點評 本題主要考查了正弦定理的應用.解題過程中常需要正弦定理,余弦定理,三角形面積公式以及勾股定理等知識.要求熟練掌握相應的公式和定理,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

12.若a∈[0,1],b∈[0,1],則函數(shù)y=x3+$\sqrt{a}{x^2}$+bx+2為增函數(shù)的概率為( 。
A.$\frac{5}{6}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知函數(shù)f(x)=sin(ωx+φ)對任意的x∈R都有f($\frac{π}{4}$-x)=f($\frac{π}{4}$+x),若函數(shù)g(x)=2cos(ωx+φ)-1,則g($\frac{π}{4}$)的值為( 。
A.-3B.1C.-1D.1或-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.閱讀如圖的程序的框圖,則輸出S=50.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知點F1,F(xiàn)2分別是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦點,過F1且垂直于x軸的直線與雙曲線交于(-c,±$\frac{^{2}}{a}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知c>0,設(shè)命題p:函數(shù)y=cx為減函數(shù).命題q:當x∈[$\frac{1}{2}$,2]時,函數(shù)f(x)=x+$\frac{1}{x}$>$\frac{1}{c}$恒成立.如果“p或q”為真命題,“p且q”為假命題,則c的取值范圍是$(0,\frac{1}{2}]∪[1,+∞)$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)$f(x)=\frac{1}{2}{x^2}-(2a+2)x+(2a+1)lnx$,若曲線y=f(x)在點(2,f(2))處的切線的斜率小于零,
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)對任意x1,x2∈[0,2](x1≠x2),$a∈[{\frac{3}{2},\frac{5}{2}}]$,恒有$|{f({x_1})-f({x_2})}|<λ|{\frac{1}{x_1}-\frac{1}{x_2}}|$成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.不等式|x+3|-|x-1|≤a對任意實數(shù)x恒成立,則實數(shù)a的取值范圍是( 。
A.[4,+∞)B.(4,+∞)C.[2,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.對于函數(shù)f(x)=(x2-2x+2)ex-$\frac{e}{3}{x^3}$的下列描述,錯誤的是( 。
A.無最大值
B.極大值為2
C.極小值為$\frac{2e}{3}$
D.函數(shù)g(x)=f(x)-2的圖象與x軸只有兩個交點

查看答案和解析>>

同步練習冊答案