12.若a∈[0,1],b∈[0,1],則函數(shù)y=x3+$\sqrt{a}{x^2}$+bx+2為增函數(shù)的概率為(  )
A.$\frac{5}{6}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{1}{6}$

分析 求出函數(shù)y=x3+$\sqrt{a}{x^2}$+bx+2為增函數(shù)時(shí),a-3b≤0,結(jié)合a∈[0,1],b∈[0,1],求出相應(yīng)的面積,即可得出結(jié)論.

解答 解:∵y=x3+$\sqrt{a}{x^2}$+bx+2,
∴y′=3x2+2$\sqrt{a}$x+b,
∵函數(shù)y=x3+$\sqrt{a}{x^2}$+bx+2為增函數(shù),
∴y′=3x2+2$\sqrt{a}$x+b≥0恒成立,
∴△=4a-12b≤0,
∴a-3b≤0,
∵a∈[0,1],b∈[0,1],
∴區(qū)域面積為1,a-3b≤0時(shí),區(qū)域面積為1-$\frac{1}{2}$×$\frac{1}{3}$×1=$\frac{5}{6}$,
∴函數(shù)y=x3+$\sqrt{a}{x^2}$+bx+2為增函數(shù)的概率為$\frac{5}{6}$.
故選:A.

點(diǎn)評 本題考查幾何概型,考查導(dǎo)數(shù)知識的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.等差數(shù)列{an}的公差為d,則數(shù)列{can}(c為常數(shù)且c≠0)是( 。
A.公差為d的等差數(shù)列B.公差為cd的等差數(shù)列
C.不是等差數(shù)列D.以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖,ABCD-A1B1C1D1是棱長為a的正方體,有下列說法:
①若點(diǎn)P在△BDC1所在平面上運(yùn)動(dòng),則三棱錐P-AB1D1的體積為定值;
②直線 A1C與平面BDC1的交點(diǎn)為△BDC1的外心;
③若點(diǎn)M、N、L分別是棱A1B1,A1D1,A1A上與端點(diǎn)不重合的三個(gè)動(dòng)點(diǎn),則△MNL必為銳角三角形;
④若點(diǎn)Q為的中點(diǎn),點(diǎn)G為正方形ABCD-A1B1C1D1(包含邊界)內(nèi)的一個(gè)動(dòng)點(diǎn),且始終滿足GQ⊥A1C,則動(dòng)點(diǎn)G的軌跡是以A1為圓心,$\frac{{\sqrt{2}}}{3}$a為半徑的一段圓。
其中正確說法有①②③(寫出所有正確說法的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)在定義域[2-a,3]上是偶函數(shù),在[0,3]上單調(diào)遞減,并且f(-m2-$\frac{a}{5}$)>f(-m2+2m-2),則m的取值范圍是$1-\sqrt{2}≤m≤\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某班幾位同學(xué)組成研究性學(xué)習(xí)小組,對[25,55]歲的人群隨機(jī)抽取n人進(jìn)行了一次日常生活中是否具有環(huán)保意識的調(diào)查.若生活習(xí)慣具有環(huán)保意識的稱為“環(huán)保族”,否則稱為“非環(huán)保族”.
得到如下統(tǒng)計(jì)表:
組數(shù)分組環(huán)保族人群占本組的頻率本組占樣本的頻率
第一組[25,30)1200.60.2
第二組[30,35)1950.65q
第三組[35,40)1000.50.2
第四組[40,45)a0.40.15
第五組[45,50)300.30.1
第六組[50,55]150.30.05
(1)求q、n、a的值.
(2)從年齡段在[40,55]的“環(huán)保族”中采用分層抽樣法抽取7人參加戶外環(huán)保活動(dòng),其中選取2人作為領(lǐng)隊(duì),求選取的2名領(lǐng)隊(duì)中恰有1人年齡在[45,50)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)a>b>1,c<0,給出下列四個(gè)結(jié)論:
①$\frac{c}{a}$>$\frac{c}$;
②ac>bc;
③(1-c)a<(1-c)b;
④logb(a-c)>loga(b-c).
其中正確結(jié)論有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)F1,F(xiàn)2為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-y2=1的兩個(gè)焦點(diǎn),已知點(diǎn)P在此雙曲線上,且$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0.若此雙曲線的離心率等于$\frac{\sqrt{5}}{2}$,則點(diǎn)P到x軸的距離等于$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=|log2|x-3||,且關(guān)于x的方程[f(x)]2+af(x)+b=0有6個(gè)不同的實(shí)數(shù)解,若最小實(shí)數(shù)解
為-5,則a+b的值為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在△ABC中,若2b=a+c,B=30°,且該三角形的面積為$\frac{3}{2}$,則b=1+$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案