A. | -3 | B. | 1 | C. | -1 | D. | 1或-3 |
分析 由題意可知函數(shù)f(x)的圖象關(guān)于直線x=$\frac{π}{4}$對稱,可知ω•$\frac{π}{4}$+φ=kπ+$\frac{π}{2}$,k∈Z,g($\frac{π}{4}$)=2cos(ω•$\frac{π}{4}$+φ)-1=-1.
解答 解:根據(jù)f($\frac{π}{4}$-x)=f($\frac{π}{4}$+x),可得函數(shù)f(x)的圖象關(guān)于直線x=$\frac{π}{4}$對稱,
故有ω•$\frac{π}{4}$+φ=kπ+$\frac{π}{2}$,k∈Z,
g($\frac{π}{4}$)=2cos(ω•$\frac{π}{4}$+φ)-1=0-1=-1,
故答案選:C.
點評 本題主要考查余弦函數(shù)的圖象的對稱性,考查余弦函數(shù)的性質(zhì),屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{2}{5}$ | C. | $\frac{1}{3}$ | D. | $\frac{2}{7}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|-1<x<1} | B. | {-1,0,1} | C. | {-1,0} | D. | {0,1} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com