15.設(shè)復(fù)數(shù)z滿足z(1-2i)=2+i(其中i為虛數(shù)單位),則z的模為( 。
A.1B.$\sqrt{2}$C.$\sqrt{5}$D.3

分析 由z(1-2i)=2+i,得$z=\frac{2+i}{1-2i}$,然后利用復(fù)數(shù)代數(shù)形式的乘除運算化簡復(fù)數(shù)z,再由復(fù)數(shù)求模公式計算得答案.

解答 解:由z(1-2i)=2+i,
得$z=\frac{2+i}{1-2i}$=$\frac{(2+i)(1+2i)}{(1-2i)(1+2i)}=\frac{5i}{5}=i$,
則z的模為:1.
故選:A.

點評 本題考查了復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在△ABC中,角A,B,C所對的邊分別為a,b,c,若b=2,B=45°,且此三角形只有一個解,則實數(shù)a的取值范圍是(0,2]∪{2$\sqrt{2}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.某同學(xué)先后投擲一枚骰子兩次,第一次向上的點數(shù)記為x,第二次向上的點數(shù)記為y,在直角坐標xOy系中,以(x,y)為坐標的點落在直線2x-y=1上的概率為$\frac{1}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.定義在R上的單調(diào)函數(shù)f(x)滿足f(3)>f(0),且對任意x,y∈R都有f(x+y)=f(x)+f(y).
(1)求證f(x)為奇函數(shù);
(2)若f(k•3x)+f(3x-9x-2)<0對任意x∈R恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)y=loga(x2+3x+a)的值域為R,則a的取值范圍為(0,1)∪(1,$\frac{9}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.定義在R上的偶函數(shù)f(x)滿足f(x+3)=f(x).若f(2)>1,f(7)=a,則實數(shù)a的取值范圍為(  )
A.(-∞,-3)B.(3,+∞)C.(-∞,-1)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)y=$\frac{{\sqrt{9-{x^2}}}}{{{{log}_2}({x+1})}}$的定義域是(  )
A.(-1,3)B.(-1,3]C.(-1,0)∪(0,3)D.(-1,0)∪(0,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若點M($\frac{1}{3}$,a)在函數(shù)y=log3x的圖象上,且角θ的終邊所在直線過點M,則tanθ=( 。
A.$-\frac{1}{3}$B.$±\frac{1}{3}$C.-3D.±3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.向邊長分別為3、4、5的三角形區(qū)域內(nèi)隨機投一點M,則該點M與三角形三個頂點距離都大于1的概率為( 。
A.1-$\frac{π}{18}$B.1-$\frac{π}{12}$C.1-$\frac{π}{9}$D.1-$\frac{π}{4}$

查看答案和解析>>

同步練習冊答案