16.將圓x2+y2=4每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?\frac{1}{2}$倍,得到曲線C.
(1)寫出C的參數(shù)方程;
(2)設(shè)直線l:x+2y-2=0與C的交點(diǎn)為P1、P2,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,求:過線段P1P2的中點(diǎn)且與l垂直的直線的極坐標(biāo)方程.

分析 (1)寫出圓x2+y2=4的參數(shù)方程,即可求出C的參數(shù)方程.
(2)解方程組求得P1、P2的坐標(biāo),可得線段P1P2的中點(diǎn)坐標(biāo).再根據(jù)與l垂直的直線的斜率為2,用點(diǎn)斜式求得所求的直線的方程,再根據(jù)x=ρcosα、y=ρsinα 可得所求的直線的極坐標(biāo)方程.

解答 解:(1)設(shè)(x1,y1)為圓上的點(diǎn),在已知變換下變?yōu)镃上點(diǎn)(x,y),…(2分)
依題意得:圓x2+y2=4的參數(shù)方程為$\left\{\begin{array}{l}{x=2cost}\\{y=2sint}\end{array}\right.$(t為參數(shù))…(3分)
∴C的參數(shù)方程是$\left\{\begin{array}{l}{x=2cost}\\{y=sint}\end{array}\right.$(t為參數(shù))…(5分)
(2)C的普通方程是$\frac{{x}^{2}}{4}+{y}^{2}$=1.
與直線l:x+2y-2=0聯(lián)立解得$\left\{\begin{array}{l}{x=2}\\{y=0}\end{array}\right.$或$\left\{\begin{array}{l}{x=0}\\{y=1}\end{array}\right.$…(6分)
所以P1(2,0),P2(0,1),則線段P1P2的中點(diǎn)坐標(biāo)為(1,$\frac{1}{2}$),所求直線的斜率k=2,
于是所求直線方程為y-$\frac{1}{2}$=2(x-1),并整理得4x-2y=3…(8分)
再根據(jù)x=ρcosα、y=ρsinα 可得所求的直線的極坐標(biāo)方程為ρ=$\frac{3}{4cosα-2sinα}$.…(10分)

點(diǎn)評(píng) 本題主要考查求點(diǎn)的軌跡方程的方法,極坐標(biāo)和直角坐標(biāo)的互化,用點(diǎn)斜式求直線的方程,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.直線2x+2y+1=0,x+y+2=0之間的距離是(  )
A.$\frac{{3\sqrt{2}}}{4}$B.$\frac{3}{4}$C.$\sqrt{5}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知向量$\overrightarrow a$=(2sinx,cosx),$\overrightarrow b$=($\sqrt{3}$cosx,2cosx),函數(shù)f(x)=$\overrightarrow a•\overrightarrow b+m$(x∈R),其中m為常數(shù).
(1)求函數(shù)y=f(x)的周期;
(2)如果y=f(x)的最小值為0,求m的值,并求此時(shí)f(x)的最大值及取得最大值時(shí)自變量x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,已知直線y=$\frac{1}{2}$x與雙曲線y=$\frac{k}{x}$(k>0)交于A、B兩點(diǎn),點(diǎn)B坐標(biāo)為(-4,-2),C為雙曲線y=$\frac{k}{x}$(k>0)上一點(diǎn),且在第一象限內(nèi),若△AOC面積為6,則點(diǎn)C坐標(biāo)為(  )
A.(4,2)B.(2,3)C.(3,4)D.(2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若f(x)和g(x)都是定義在R上的函數(shù),則“f(x)與g(x)同是奇函數(shù)”是“f(x)•g(x)是偶函數(shù)”的( 。
A.充分非必要條件B.必要非充分條件
C.充要條件D.既非充分又非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某職業(yè)學(xué)校共有40位老師,乘坐公共汽車或地鐵上班,某天上班途中有18位老師乘坐過公共汽車,24位老師乘坐過地鐵,該天既乘坐過公共汽車,又乘坐過地鐵的有幾位老師?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,$\overrightarrow{a}$與$\overrightarrow$的夾角為120°.
(1)求|$\overrightarrow{a}$+2$\overrightarrow$|的值;
(2)求$\overrightarrow{a}$+2$\overrightarrow$在$\overrightarrow$方向上的投影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知logax=3loga2+$\frac{1}{2}$loga9-loga5(a>0,a≠1),求x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.點(diǎn)(1,-1)到直線3x-4y+3=0的距離是2.

查看答案和解析>>

同步練習(xí)冊(cè)答案