9.已知等差數(shù)列{an},a3=5,則a1+2a4=15.

分析 利用等差數(shù)列的通項(xiàng)公式求解.

解答 解:∵等差數(shù)列{an},a3=5,
∴a1+2d=5,
∴a1+2a4=a1+2(a1+3d)=3(a1+2d)=15.
故答案為:15.

點(diǎn)評(píng) 本題考查等差數(shù)列的某幾項(xiàng)和的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若復(fù)數(shù)z滿足$\frac{{|{1+i}|}}{z}$=1-i,則復(fù)數(shù)z的共軛復(fù)數(shù)$\bar z$的虛部為( 。
A.$-\frac{{\sqrt{2}}}{2}i$B.$-\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{2}}}{2}i$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知集合M={x|3-x>0},N={1,2,3,4,5},則M∩N={1,2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知數(shù)列{an}滿足${a_{n+1}}=\frac{1}{2}+\sqrt{{a_n}-{a_n}^2}$,且a1=0,則該數(shù)列的前100項(xiàng)的和等于( 。
A.24B.25C.74D.75

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若方程x2+2ax+a+1=0的兩根,一個(gè)根比2大,一個(gè)根比2小,求a的取值范圍為a<-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知集合M={x|log2x<2},N={0,1,3,5},則M∩N=( 。
A.(0,4)B.{1,3}C.{0,1,3}D.{1,3,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.等差數(shù)列{an}的前n項(xiàng)和為Sn,若a1=1,S2=a3,則a2=2,Sn=$\frac{{n}^{2}+n}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{f(x+2),x<2}\\{(\frac{1}{2})^{x},x>2}\end{array}\right.$,則f(1)的值為$\frac{1}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.如果在集合A={1,2,3,…,9}的三個(gè)元素的子集中,三個(gè)元素的和分別為a1,a2,a3,…,an,則a1+a2+a3+…+an=1980.

查看答案和解析>>

同步練習(xí)冊(cè)答案