已知函數(shù)的定義域為,若對任意,當時,都有,則稱函數(shù)上為非減函數(shù).設函數(shù)上為非減函數(shù),且滿足以下三個條件:①;②;③.則( )

A. B. C. D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

19.設|$\overrightarrow{OA}$|=1,|$\overrightarrow{OB}$|=2,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,且λ+μ=1,則$\overrightarrow{OA}$在$\overrightarrow{OP}$上的投影的取值范圍是(-$\sqrt{5}$,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知函數(shù)F(x)=ex滿足F(x)=g(x)+h(x),且g(x),h(x)分別是R上的偶函數(shù)和奇函數(shù),若?x∈(0,2]使得不等式g(2x)-ah(x)≥0恒成立,則實數(shù)a的取值范圍是$({-∞,2\sqrt{2}}]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=2sin2x(cos2x-sin2x)+1
(1)求函數(shù)f(x)的單調(diào)增區(qū)間和對稱中心;
(2)若f(x)得圖象C經(jīng)過向右平移$\frac{π}{4}$得函數(shù)g(x)的圖象,求g(x)的解析式,并求出當x∈[0,$\frac{π}{4}$]時,g(x)的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知a<0,-1<b<0,試比較a、ab、ab2的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.若a<0,則關于x的不等式x2-4ax-5a2<0的解集是(5a,-a).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.在△ABC中,角A,B,C所對的邊分別是a,b,c,已知acosC+ccosA=2bcosA.
(Ⅰ)求角A的值;
(Ⅱ)若a=1,求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知tanα=3,求下列各式的值:
(1)$\frac{3sinα-2cosα}{sinα-cosα}$;
(2)$\frac{1}{si{n}^{2}α-co{s}^{2}α}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.函數(shù)f(x)=$\frac{\sqrt{x+2}}{x+1}$,寫出f(1),f(2),并求該函數(shù)的定義域.

查看答案和解析>>

同步練習冊答案