分析 由條件求得|$\overrightarrow{OP}$|、$\overrightarrow{OA}•\overrightarrow{OP}$的值,可得$\overrightarrow{OA}$在$\overrightarrow{OP}$上的投影為x=$\frac{λ}{\sqrt{{5λ}^{2}-8λ+4}}$,分類討論,求得$\frac{1}{x}$的范圍,可得x的范圍.
解答 解:∵|$\overrightarrow{OA}$|=1,|$\overrightarrow{OB}$|=2,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,且λ+μ=1,
∴|$\overrightarrow{OP}$|=$\sqrt{{[λ\overrightarrow{OA}+(1-λ)\overrightarrow{OB}]}^{2}}$=$\sqrt{{λ}^{2}+0+{4(1-λ)}^{2}}$=$\sqrt{{5λ}^{2}-8λ+4}$,
∴$\overrightarrow{OA}$•$\overrightarrow{OP}$=$\overrightarrow{OA}$•[λ$\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$]=λ•${\overrightarrow{OA}}^{2}$+(1-λ)$\overrightarrow{OA}$•$\overrightarrow{OB}$=λ•${\overrightarrow{OA}}^{2}$=λ.
設(shè)$\overrightarrow{OA}$在$\overrightarrow{OP}$上的投影為x,則 $\overrightarrow{OA}$•$\overrightarrow{OP}$=x•|$\overrightarrow{OP}$|=x•$\sqrt{{5λ}^{2}-8λ+4}$=λ,
∴x=$\frac{λ}{\sqrt{{5λ}^{2}-8λ+4}}$.
當(dāng)λ=0時(shí),x=0,當(dāng)λ>0時(shí),$\frac{1}{x}$=$\sqrt{\frac{{5λ}^{2}-8λ+4}{{λ}^{2}}}$=$\sqrt{\frac{4}{{λ}^{2}}-\frac{8}{λ}+5}$=$\sqrt{{(\frac{2}{λ}-2)}^{2}+1}$,故當(dāng)λ=1時(shí),$\frac{1}{x}$取得最小值,為1,
即$\frac{1}{x}$≥1,∴0<x≤1.
當(dāng)λ<0時(shí),$\frac{1}{x}$=-$\sqrt{\frac{{5λ}^{2}-8λ+4}{{λ}^{2}}}$=-$\sqrt{\frac{4}{{λ}^{2}}-\frac{8}{λ}+5}$=-$\sqrt{{(\frac{2}{λ}-2)}^{2}+1}$<-$\sqrt{4+1}$=-$\sqrt{5}$,即 $\frac{1}{x}$<-$\sqrt{5}$,
∴-$\sqrt{5}$<x<0.
綜上可得,x∈(-$\sqrt{5}$,1],
故答案為:(-$\sqrt{5}$,1].
點(diǎn)評 本題考點(diǎn)是向量在幾何中的應(yīng)用,綜合考查了向量的線性運(yùn)算,向量的數(shù)量積的運(yùn)算及數(shù)量積公式,熟練掌握向量的相關(guān)公式是解題的關(guān)鍵,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|0≤x≤1} | B. | {x|1<x<2} | C. | {x|0≤x<2} | D. | {x|0≤x≤1}∪{2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2π2a3 | B. | π2a3 | C. | $\frac{{π}^{2}}{2}$a3 | D. | $\frac{{π}^{2}}{3}$a3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年廣東清遠(yuǎn)三中高一上學(xué)期月考一數(shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2017122706172325089806/SYS201712270617390327303281_ST/SYS201712270617390327303281_ST.002.png">,若對任意,當(dāng)時(shí),都有,則稱函數(shù)在上為非減函數(shù).設(shè)函數(shù)在上為非減函數(shù),且滿足以下三個(gè)條件:①;②;③.則( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com