分析 (1)要使函數(shù)過定點(diǎn),則需a的系數(shù)3x2-4x+1為0,解得x=1或x=$\frac{1}{3}$.
(2)先對(duì)a進(jìn)行分類討論,再對(duì)對(duì)稱軸進(jìn)行分類.
解答 (1)∵a+b=1,∴b=1-a.
∴f(x)=a(3x2-4x+1)-1,
要使函數(shù)過定點(diǎn),則需3x2-4x+1=0,
解得x=1或x=$\frac{1}{3}$.
故可知函數(shù)的圖象必過的定點(diǎn)是(1,-1)和($\frac{1}{3}$,-1).
(2)當(dāng)a=0時(shí),f(x)=2(b-1)x-b∈[b-2,2-3b],所以此時(shí)|f(x)|≤5;
當(dāng)a<0時(shí),對(duì)稱軸x=$\frac{a-b+1}{3a}≤\frac{1}{3}$,
①$\frac{a-b+1}{3a}≤-1$,即b≤1+4a時(shí),f(x)∈[a+b-2,5a-3b+2],此時(shí)-4≤f(x)≤5,
②$\frac{a-b+1}{3a}>-1$,即b>1+4a時(shí),f(x)≤-b-$\frac{(a-b+1)^{2}}{3a}$<-b-3a≤4,
又f(x)≥min{a-b+2,5a-3b+2}≥-6,所以|f(x)|≤6,
當(dāng)a>0時(shí),對(duì)稱軸x=$\frac{a-b+1}{3a}$≥$\frac{1}{3}$
$①\frac{a-b+1}{3a}≥1,即b≤1-2a時(shí)$,f(x)≤5a-3b+2≤10,
f(x)≥a+b-2≥-3,所以|f(x)|≤10.
$②\frac{a-b+1}{3a}<1,即b>1-2a時(shí)$,f(x)≤5a-3b+2≤10.
f(x)≥-b-$\frac{(a-b+1)^{2}}{3a}$≥-b-3a≥4,所以|f(x)|≤10.
綜上,M的最大值為10,當(dāng)a=1,b=-1,x=-1時(shí)取到.
點(diǎn)評(píng) 本題考查函數(shù)過定點(diǎn)問題和分類討論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
年級(jí)名次 是否近視 | 1~50 | 951~1000 |
近視 | 41 | 32 |
不近視 | 9 | 18 |
P(K2≥k) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{7}{4}$,$\frac{23}{4}$) | B. | (-∞,$\frac{23}{4}$) | C. | (-$\frac{7}{4}$,6) | D. | (-2,$\frac{23}{4}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0,1 | B. | 0,2 | C. | 1,2 | D. | 1,4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com