3.如圖,在空間四邊形ABCD中,若P,R,Q分別是AB,AD,CD的中點,過P,R,Q的平面與BC交于點S,求證:S是BC的中點.

分析 通過證明PR∥BD,推出PR∥平面BCD.然后證明SQ∥BD.利用Q是CD的中點,說明S是BC的中點.

解答 證明:由于Q是CD的中點,要證S是BC的中點,只需證SQ∥BD.
在△ABD中,點P,R分別是AB,AD的中點,則PR∥BD,
又PR?平面BCD,BD?平面BCD,
所以PR∥平面BCD.又PR?平面PRQS,平面PRQS∩平面BCD=SQ,
所以PR∥SQ,又PR∥BD,則SQ∥BD.又Q是CD的中點,
所以S是BC的中點.

點評 本題考查直線與平面平行的判定定理的應用,考查轉化思想以及空間想象能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

7.將十位制389化成四進位制數(shù)是12011(4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知集合A={x|-2≤x≤5},B={x|2m-1≤x≤m+1}若B⊆A,則m的取值范圍$[-\frac{1}{2},+∞)$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=|x-a|.
(1)若f(x)>m(m>0)的解集為x∈(-∞,1)∪(7,+∞),求實數(shù)a,m的值;
(2)當a=-1時,當x≤-2時,不等式f(x)+t≥f(x+2)恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,已知直四棱柱ABCD-A1B1C1D1的底面是菱形,且∠DAB=60°,AD=AA1,F(xiàn)為棱BB1的中點,M為線段AC1的中點.
(1)求證:直線MF∥平面ABCD
(2)求證:MF⊥平面ACC1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.點(a,b)在兩直線y=x-2和y=x-4之間的帶狀區(qū)域內(含邊界),則f(a,b)=a2-2ab+b2+2a-2b的最小值與最大值的和為32.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=|x+2|-|x-3|.
(1)試求f(x)的值域;
(2)設g(x)=$\frac{a{x}^{2}-5x+5}{x}(a>0)$,若對任意x1∈(0,+∞),任意x2∈(-∞,+∞)恒有g(x1)≥f(x2)成立,試求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.項數(shù)為n的數(shù)列a1,a2,a3,…,an的前k項和為Sk(k=1,2,3,…,n),定義$\frac{{S}_{1}{+S}_{2}+…{+S}_{n}}{n}$為該項數(shù)列的“凱森和”,如果項數(shù)為99項的數(shù)列a1,a2,a3,…,a99的“凱森和”為1 000,那么項數(shù)為100的數(shù)列10,a1,a2,a3,…,a99的“凱森和”為( 。
A.991B.1 000C.1 090D.1 100

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知數(shù)列{xn}的首項x1=3,通項${x_n}={2^n}p+nq$(n∈N*.p,q為常數(shù))且x1,x4,x5成等差數(shù)列,求p,q的值.

查看答案和解析>>

同步練習冊答案