分析 (1)化為分段函數(shù),即可求出函數(shù)的值域,
(2)根據(jù)基本不等式求出g(x)min,若任意x1∈(0,+∞),任意x2∈(-∞,+∞)恒有g(shù)(x1)≥f(x2)成立,則有g(shù)(x)min>f(x)max,即可得到關(guān)于a的不等式,解得即可.
解答 解:(1)函數(shù)f(x)=$\left\{\begin{array}{l}{-5,x≤-2}\\{2x-1,-2<x<3}\\{5,x≥3}\end{array}\right.$,
∴f(x)的值域為[-5,5],
(2)若x>0,則g(x)=$\frac{a{x}^{2}-5x+5}{x}$=ax+$\frac{5}{x}$-5≥2$\sqrt{5a}$-5,
當(dāng)ax2=5時,g(x)min=2$\sqrt{5a}$-5,
由(1)知,f(x)max=5,
若任意x1∈(0,+∞),任意x2∈(-∞,+∞)恒有g(shù)(x1)≥f(x2)成立,
則有g(shù)(x)min>f(x)max,
∴2$\sqrt{5a}$-5≥5,
解得a≥5,
故a的取值范圍為[5,+∞)
點評 本題考查了絕對值函數(shù),和不等式恒成立的問題,關(guān)鍵是轉(zhuǎn)化,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$∉A | B. | $\sqrt{2}$∈∁sB | C. | $\sqrt{2}$∉A∩B | D. | $\sqrt{2}$∈(∁sA)∩(∁sB) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | -2 | C. | ±2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
X(月份) | 1 | 2 | 3 | 4 | 5 |
Y(產(chǎn)量) | 4 | 4 | 5 | 6 | 6 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com