9.函數(shù)f(x)=sin(ωx+φ)的部分圖象如圖所示,則f(x)的對稱軸為(  )
A.x=-$\frac{1}{4}$+kπ,k∈ZB.x=-$\frac{1}{4}$+2kπ,k∈ZC.x=-$\frac{1}{4}$+k,k∈ZD.x=-$\frac{1}{4}$+2k,k∈Z

分析 先由圖象求得函數(shù)的半個(gè)周期和其中一條對稱軸,可得結(jié)論.

解答 解:由圖可知,函數(shù)的半個(gè)周期為 $\frac{T}{2}$=$\frac{1}{2}•\frac{2π}{ω}$=$\frac{5}{4}$-$\frac{1}{4}$=1,
∵函數(shù)的其中一條對稱軸為x=$\frac{\frac{1}{4}+\frac{5}{4}}{2}$=$\frac{3}{4}$,而函數(shù)相鄰的兩條對稱軸相差半個(gè)周期,
故f(x)的圖象的對稱軸為x=k•1+$\frac{3}{4}$,k∈Z,即(x)的對稱軸為x=k-$\frac{1}{4}$,k∈Z.
故選:C.

點(diǎn)評 本題主要考查正弦函數(shù)的周期性以及圖象的對稱性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求定積分${∫}_{0}^{\frac{π}{2}}$($\frac{1}{2}$+cos2$\frac{x}{2}$)dx的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和,若a5>0,a5+a6<0,則使Sn>0成立的最大正整數(shù)n為( 。
A.6B.7C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在3張卡片的正、反兩面上,別寫著1和2,4和5,7和8,若將它們并排組成三位數(shù),則一共能組成多少個(gè)不同的三位數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.水土流失是我國西部大開發(fā)中最突出的生態(tài)問題.全國約有9100萬畝的坡耕地需要退耕還林,其中西部地區(qū)占70%,國家確定2007年西部地區(qū)退耕土地面積為515萬畝,以后每年退耕土地面積遞增12%,那么從2007年開始需要幾年,西部地區(qū)可將所有坡耕地退耕還林?(log1.122.4843≈8.0297)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,BC⊥AB,點(diǎn)M、N分別是線段A1C1,A1B的中點(diǎn).
(1)求證:平面A1BC⊥平面A1AB.
(2)設(shè)平面MNB1與平面BCC1B1的交線為l,求證:MN∥l.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)函數(shù)f(x)=ax2-2ax+2-2b(a,b∈R),當(dāng)x∈[-2,2]時(shí),f(x)≥0恒成立,則a+2b的最大值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知點(diǎn)P(x,y)滿足4x+y=xy(x>0,y>0)上,則x+y的最小值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若$(2+x+{x^2}){(1-\frac{1}{x})^3}$的展開式中的常數(shù)項(xiàng)為a,則$\int_0^a{(3{x^2}-1)dx}$的值為( 。
A.6B.20C.8D.24

查看答案和解析>>

同步練習(xí)冊答案