分析 (1)求出函數(shù)的導(dǎo)數(shù),根據(jù)f′(1)=-3,求出a,把B代入函數(shù)表達(dá)式,求出b即可;
(2)求出f(x)的導(dǎo)數(shù),得到函數(shù)的極值點(diǎn),計(jì)算極值和端點(diǎn)值,得到關(guān)于A的不等式,解出即可;
(3)求出g(x)的導(dǎo)數(shù),通過討論t的范圍,得到函數(shù)的單調(diào)區(qū)間,從而求出滿足條件的t的值即可.
解答 解:(1)f′(x)=3x2+2ax
依題意得k=f′(1)=3+2a=-3,
∴a=-3,∴f(x)=x3-3x2+1,
把B(1,b)代入得b=f(1)=-1,
∴a=-3,b=-1 …(3分)
(2)令f′(x)=3x2-6x=0,得x=0或x=2,
∵f(0)=1,f(2)=23-3×22+1=-3,
f(-1)=-3,f(4)=17,
∴x∈[-1,4],-3≤f(x)≤17,
要使f(x)≤A-1993對(duì)于x∈[-1,4]恒成立,
則f(x)的最大值17≤A-1993,
∴A≥2010. …(7分)
(3)已知g(x)=-(x3-3x2+1)-3x2+tx+1=-x3+tx,
∴g′(x)=-3x2+t,
∵0<x≤1,∴-3≤-3x2<0,
①當(dāng)t>3時(shí),t-3x2>0,即g′(x)>0,
∴g(x)在(0.1]上為增函數(shù),
g(x)的最大值g(1)=t-1=1,得t=2(不合題意,舍去)
②當(dāng)0≤t≤3時(shí),g′(x)=-3x2+t,
令g′(x)=0,得x=$\sqrt{\frac{t}{3}}$,
列表如下:
x | (0,$\sqrt{\frac{t}{3}}$) | $\sqrt{\frac{t}{3}}$ | $(\sqrt{\frac{t}{3}},1]$ |
g′(x) | + | 0 | - |
g(x) | ↗ | 極大值 | ↘ |
點(diǎn)評(píng) 本題考查了切線方程問題,考查函數(shù)的單調(diào)性、極值、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1-i | B. | 1+i | C. | -1+i | D. | -1-i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
K2>K | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com