【題目】已知函數(shù))是定義在上的奇函數(shù).

(1)求的值;

(2)求函數(shù)的值域;

(3)當(dāng)時, 恒成立,求實數(shù)的取值范圍.

【答案】(1) ;(2) ;(3) .

【解析】試題分析:(1)根據(jù)函數(shù)的奇偶性得到f(﹣x)=﹣f(x),求出a的值即可;

(2)將f(x)變形,解關(guān)于y的不等式,求出f(x)的值域即可;

(3)結(jié)合圖象求出m的范圍即可;

(4)令2x=u,x∈(0,1]u∈(1,2],得到u∈(1,2]時,u2﹣(t+1)u+t﹣2≤0恒成立,求出t的范圍即可.

試題解析:

(1)是定義在上的奇函數(shù),即恒成立,∴.

,解得.

(2)由(1)知

,即,由

,即的值域為

(3)原不等式,即為.即.

設(shè),,時, 恒成立,

時, 恒成立,

,解得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《中華人民共和國民法總則》(以下簡稱《民法總則》)自2017年10月1日起施行。作為民法典的開篇之作,《民法總則》與每個人的一生息息相關(guān).某地區(qū)為了調(diào)研本地區(qū)人們對該法律的了解情況,隨機抽取50人,他們的年齡都在區(qū)間[25,85]上,年齡的頻率分布及了解《民法總則》的人數(shù)如下表:

年齡

[2535)

[35,45)

[4555)

[55,65)

[65,75)

[75,85)

頻數(shù)

5

5

10

15

5

10

了解《民法總則》

1

2

8

12

4

5

(Ⅰ)填寫下面2×2 列聯(lián)表,并判斷是否有99%的把握認(rèn)為以45歲為分界點對了解《民法總則》政策有差異;

(Ⅱ)若對年齡在[45,55),[65,75)的被調(diào)研人中各隨機選取2人進行深入調(diào)研,記選中的4人中不了解《民法總則》的人數(shù)為X,求隨機變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將一顆質(zhì)地均勻的骰子(它是一種各面上分別標(biāo)有點數(shù)1、2、3、4、5、6的正方體玩具)先后拋擲2次,記第一次出現(xiàn)的點數(shù)為m,記第二次出現(xiàn)的點數(shù)為n,向量共線的概率為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn),當(dāng)圓內(nèi)接多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,由此創(chuàng)立了割圓術(shù),利用割圓術(shù)劉徽得到了圓周率精確到小數(shù)點后面兩位的近似值3.14,這就是著名的徽率.如圖是利用劉徽的割圓術(shù)設(shè)計的程序框圖,則輸出的n值為 (參考數(shù)據(jù):,)

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國是世界嚴(yán)重缺水的國家,城市缺水問題較為突出,某市政府為了鼓勵居民節(jié)約用水,計劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標(biāo)準(zhǔn)(噸),用水量不超過的部分按平價收費,超過的部分按議價收費,為了了解全市民月用水量的分布情況,通過抽樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.

(Ⅰ)若全市居民中月均用水量不低于3噸的人數(shù)為3.6萬,試估計全市有多少居民?并說明理由;

(Ⅱ)若該市政府?dāng)M采取分層抽樣的方法在用水量噸數(shù)為之間選取7戶居民作為議價水費價格聽證會的代表,并決定會后從這7戶家庭中按抽簽方式選出4戶頒發(fā)“低碳環(huán)保家庭”獎,設(shè)為用水量噸數(shù)在中的獲獎的家庭數(shù),為用水量噸數(shù)在中的獲獎家庭數(shù),記隨機變量,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)舉行了為期3天的春季運動會,同時進行全校精神文明擂臺賽.為了解這次活動在全校師生中產(chǎn)生的影響,分別在全校500名教職員工、3000名初中生、4000名高中生中作問卷調(diào)查,如果要在所有答卷中抽出120份用于評估,應(yīng)如何抽取才能得到比較客觀的評價結(jié)論?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐中,底面ABCD為直角梯形,,,,點EAD的中點,,平面ABCD,且

求證:

線段PC上是否存在一點F,使二面角的余弦值是?若存在,請找出點F的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓Ox2y29及點C(2,1),過點C的直線l與圓O交于P,Q兩點,當(dāng)OPQ的面積最大時,直線l的方程為________

查看答案和解析>>

同步練習(xí)冊答案