分析 由已知結(jié)合三棱錐和正三棱柱的幾何特征,可得此三棱錐外接球,即為以△ABC為底面以PA為高的正三棱柱的外接球,分別求出棱錐底面半徑r,和球心距d,代入R=$\sqrt{{r}^{2}+gwi6yk6^{2}}$,可得球的半徑R,即可求出三棱錐P-ABC外接球的表面積.
解答 解:根據(jù)已知中底面△ABC是邊長為6的正三角形,PA⊥底面ABC,
可得此三棱錐外接球,即為以△ABC為底面以PA為高的正三棱柱的外接球,
∵△ABC是邊長為6的正三角形,
∴△ABC的外接圓半徑r=2$\sqrt{3}$,
∴球心到△ABC的外接圓圓心的距離d=2,故球的半徑R=$\sqrt{12+4}$=4,
故三棱錐P-ABC外接球的表面積S=4πR2=64π
故答案為:64π.
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是球內(nèi)接多面體,由題意明確三棱錐外接球是以△ABC為底面以PA為高的正三棱柱的外接球,利用半徑公式R=$\sqrt{{r}^{2}+ksukwcg^{2}}$是解答的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{3}π}{12}$m3 | B. | $\frac{\sqrt{3}π}{6}$m3 | C. | $\frac{\sqrt{3}}{3}$m3 | D. | $\frac{\sqrt{3}}{6}$m3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
廣告投入x(單位:萬元) | 1 | 2 | 3 | 4 | 5 |
銷售收益y(單位:萬元) | 2 | 3 | 2 | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{(5π-6\sqrt{3})^{2}}{18}$ | B. | $\frac{(5π+6\sqrt{3})^{2}}{18}$ | C. | $\frac{{π}^{2}}{18}$ | D. | $\frac{{π}^{2}}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 當(dāng)x>0且x≠1時(shí),lgx+$\frac{1}{lgx}$≥2 | |
B. | 當(dāng)x>0時(shí),$\sqrt{x}$+$\frac{1}{\sqrt{x}}$≥2 | |
C. | 當(dāng)0<θ≤$\frac{π}{2}$時(shí),sinθ+$\frac{2}{sinθ}$的最小值為2$\sqrt{2}$ | |
D. | 當(dāng)-$\frac{1}{2}$≤x<0時(shí),x+$\frac{1}{x}$有最大值-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x≥1} | B. | {x|1≤x<2} | C. | {x|0≤x<1} | D. | {x|0<x≤1} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com