【題目】某客戶考察了一款熱銷的凈水器,使用壽命為十年,改款凈水器為三級過濾,每一級過濾都由核心部件濾芯來實現(xiàn).在使用過程中,一級濾芯需要不定期更換,其中每更換個一級濾芯就需要更換個二級濾芯,三級濾芯無需更換.其中一級濾芯每個元,二級濾芯每個元.記一臺凈水器在使用期內(nèi)需要更換的二級濾芯的個數(shù)構(gòu)成的集合為.如圖是根據(jù)臺該款凈水器在十年使用期內(nèi)更換的一級濾芯的個數(shù)制成的柱狀圖.
(1)結(jié)合圖,寫出集合;
(2)根據(jù)以上信息,求出一臺凈水器在使用期內(nèi)更換二級濾芯的費用大于元的概率(以臺凈水器更換二級濾芯的頻率代替臺凈水器更換二級濾芯發(fā)生的概率);
(3)若在購買凈水器的同時購買濾芯,則濾芯可享受折優(yōu)惠(使用過程中如需再購買無優(yōu)惠).假設上述臺凈水器在購機的同時,每臺均購買個一級濾芯、個二級濾芯作為備用濾芯(其中,),計算這臺凈水器在使用期內(nèi)購買濾芯所需總費用的平均數(shù).并以此作為決策依據(jù),如果客戶購買凈水器的同時購買備用濾芯的總數(shù)也為個,則其中一級濾芯和二級濾芯的個數(shù)應分別是多少?
【答案】(1);(2)0.3;(3)見解析.
【解析】
(1)根據(jù)直方圖和一級濾芯和二級濾芯之間的關(guān)系,可得答案;
(2)更換二級濾芯的費用大于元,即更換4個二級濾芯,轉(zhuǎn)化為更換12個一級濾芯,由直方圖得出答案;
(3),,可以分為和兩種情況,分別算出其平均數(shù),得到結(jié)論
(1)由題意可知當一級濾芯更換、、個時,二級濾芯需要更換個,
當一級濾芯更換個時,二級濾芯需要更換個,所以;
(2)由題意可知二級濾芯更換個,需元,二級濾芯更換個,需元,
在臺凈水器中,二級濾芯需要更換個的凈水器共臺,二級濾芯需要更換個的凈水器共臺,
設“一臺凈水器在使用期內(nèi)更換二級濾芯的費用大于元”為事件,所以;
(3)因為,,
(i)若,,
則這臺凈水器在更換濾芯上所需費用的平均數(shù)為
(ii)若,,
則這臺凈水器在更換濾芯上所需費用的平均數(shù)為
所以如果客戶購買凈水器的同時購買備用濾芯的總數(shù)為個,
客戶應該購買一級濾芯個,二級濾芯個。
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: (a>b>0),四點P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三點在橢圓C上.
(1)求C的方程;
(2)設直線l不經(jīng)過P2點且與C相交于A,B兩點.若直線P2A與直線P2B的斜率的和為–1,證明:l過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市為了了解民眾對開展創(chuàng)建文明城市工作以來的滿意度,隨機調(diào)查了40名群眾,并將他們隨機分成,兩組,每組20人,組群眾給第一階段的創(chuàng)文工作評分,組群眾給第二階段的創(chuàng)文工作評分,根據(jù)兩組群眾的評分繪制了如圖所示的莖葉圖.
(Ⅰ)根據(jù)莖葉圖比較群眾對兩個階段的創(chuàng)文工作滿意度評分的平均值和集中程度(不要求計算出具體值,給出結(jié)論即可);
(Ⅱ)完成下面的列聯(lián)表,并通過計算判斷是否有的把握認為民眾對兩個階段創(chuàng)文工作的滿意度存在差異?
低于70分 | 不低于70分 | 合計 | |
第一階段 | |||
第二階段 | |||
合計 |
參考公式:,.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的極值;
(2)若,是否存在整數(shù)使對任意成立?若存在,求出的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,矩形中,,為邊的中點,沿將折起,點折至處(平面),若為線段的中點,則在折起過程中,下列說法錯誤的是( )
A.始終有平面
B.不存在某個位置,使得面
C.點在某個球面上運動
D.一定存在某個位置,使得異面直線與所成角為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題恒成立;命題方程表示雙曲線.
(1)若命題為真命題,求實數(shù)的取值范圍;
(2)若命題“”為真命題,“”為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】當前,以“立德樹人”為目標的課程改革正在有序推進.高中聯(lián)招對初三畢業(yè)學生進行體育測試,是激發(fā)學生、家長和學校積極開展體育活動,保證學生健康成長的有效措施.程度2019年初中畢業(yè)生升學體育考試規(guī)定,考生必須參加立定跳遠、擲實心球、1分鐘跳繩三項測試,三項考試滿分50分,其中立定跳遠15分,擲實心球15分,1分鐘跳繩20分.某學校在初三上期開始時要掌握全年級學生每分鐘跳繩的情況,隨機抽取了100名學生進行測試,得到下邊頻率分布直方圖,且規(guī)定計分規(guī)則如下表:
每分鐘跳繩個數(shù) | ||||
得分 | 17 | 18 | 19 | 20 |
(Ⅰ)現(xiàn)從樣本的100名學生中,任意選取2人,求兩人得分之和不大于35分的概率;;
(Ⅱ)若該校初三年級所有學生的跳繩個數(shù)服從正態(tài)分布,用樣本數(shù)據(jù)的平均值和方差估計總體的期望和方差,已知樣本方差(各組數(shù)據(jù)用中點值代替).根據(jù)往年經(jīng)驗,該校初三年級學生經(jīng)過一年的訓練,正式測試時每人每分鐘跳繩個數(shù)都有明顯進步,假設今年正式測試時每人每分鐘跳繩個數(shù)比初三上學期開始時個數(shù)增加10個,現(xiàn)利用所得正態(tài)分布模型:
預計全年級恰有2000名學生,正式測試每分鐘跳182個以上的人數(shù);(結(jié)果四舍五入到整數(shù))
若在全年級所有學生中任意選取3人,記正式測試時每分鐘跳195以上的人數(shù)為ξ,求隨機變量的分布列和期望.
附:若隨機變量服從正態(tài)分布,則,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義:圓心到直線的距離與圓的半徑之比稱為“直線關(guān)于圓的距離比”.
(1)設圓求過點P的直線關(guān)于圓的距離比的直線方程;
(2)若圓與軸相切于點A且直線關(guān)于圓C的距離比求出圓C的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,,直線()與橢圓交于,兩點(點在軸的上方).
(1)若,求的面積;
(2)是否存在實數(shù)使得以線段為直徑的圓恰好經(jīng)過坐標原點?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com