13.?dāng)?shù)列{an}的通項公式為an=2n-1,則前n項和Sn=( 。
A.n2-1B.n2C.n2+1D.(n+1)2

分析 可判斷數(shù)列{an}是等差數(shù)列,從而求前n項和Sn即可.

解答 解:∵數(shù)列{an}的通項公式為an=2n-1,
∴數(shù)列{an}是等差數(shù)列,
∴前n項和Sn=$\frac{1+2n-1}{2}$•n=n2,
故選B.

點評 本題考查了數(shù)列的性質(zhì)的判斷與應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A=$\{x|y=\sqrt{x-1}\}$,B={x|y=ln(2x-x2)},則A∩B=( 。
A.(2,+∞)B.[1,2)C.(0,2)D.[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.命題“若x≥1,則3x-2x≥1”的逆否命題是( 。
A.若3x-2x≥1,則x≥1B.若3x-2x<1,則x<1C.若x<1,則3x-2x<1D.若3x-2x<1,則x≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)點M(x,y)滿足不等式組$\left\{\begin{array}{l}{3x-y-6≤0}\\{x-y+2≥0}\\{x≥0,y≥0}\end{array}\right.$,點P($\frac{1}{a}$,$\frac{1}$)(a>0,b>0),當(dāng)$\overrightarrow{OP}$•$\overrightarrow{OM}$最大時,點M為( 。
A.(0,2)B.(0,0)C.(4,6)D.(2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知圓的方程為x2+y2-2x-4y-11=0.
(1)求圓心C的坐標(biāo)和圓的半徑r;
(2)判斷點A(1,2),B(4,6),D(5,2)與該圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在等比數(shù)列{an}中,a1+a6=33,a3•a4=32,且an+1<an(n∈N*
(1)求數(shù)列{an}的通項公式;
(2)若Tn=lga1+lga2+…+lgan,求Tn的最大值及此時n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在△ABC中,若cos2$\frac{C}{2}$=1-cosAcosB,則△ABC一定是(  )
A.直角三角形B.等腰直角三角形C.等腰三角形D.正三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在空間直角坐標(biāo)系Oxyz中,$\overrightarrow{i}$,$\overrightarrow{j}$,$\overrightarrow{k}$分別是x軸、y軸、z軸的方向向量,設(shè)$\overrightarrow{a}$為非零向量,且<$\overrightarrow{a}$,$\overrightarrow{i}$>=45°,<$\overrightarrow{a}$,$\overrightarrow{j}$>=60°,則<$\overrightarrow{a}$,$\overrightarrow{k}$>=60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=t-1\\ y=2t+1\end{array}\right.$(t為參數(shù)),曲線C2的極坐標(biāo)方程為ρ=2cosθ.
(Ⅰ)分別求出曲線C1的普通方程和曲線C2的直角坐標(biāo)方程;
(Ⅱ)若點P在曲線C2上,且P到曲線C1的距離為2,求滿足這樣條件的點P的個數(shù).

查看答案和解析>>

同步練習(xí)冊答案