分析 由題意設(shè)$\overrightarrow{i}=(1,0,0),\overrightarrow{j}=(0,1,0),\overrightarrow{k}=(0,0,1)$,$\overrightarrow{a}=(x,y,z)$,結(jié)合<$\overrightarrow{a}$,$\overrightarrow{i}$>=45°,<$\overrightarrow{a}$,$\overrightarrow{j}$>=60°,列式得到x,y,z的關(guān)系,然后再由數(shù)量積求夾角公式求得<$\overrightarrow{a}$,$\overrightarrow{k}$>.
解答 解:由題意可設(shè)$\overrightarrow{i}=(1,0,0),\overrightarrow{j}=(0,1,0),\overrightarrow{k}=(0,0,1)$,
再設(shè)$\overrightarrow{a}=(x,y,z)$,
由<$\overrightarrow{a}$,$\overrightarrow{i}$>=45°,<$\overrightarrow{a}$,$\overrightarrow{j}$>=60°,
得cos45°=$\frac{\sqrt{2}}{2}=\frac{x}{\sqrt{{x}^{2}+{y}^{2}+{z}^{2}}}$,$cos60°=\frac{1}{2}=\frac{y}{\sqrt{{x}^{2}+{y}^{2}+{z}^{2}}}$,
即${x}^{2}=\frac{1}{2}({x}^{2}+{y}^{2}+{z}^{2})$,${y}^{2}=\frac{1}{4}({x}^{2}+{y}^{2}+{z}^{2})$,
解得${y}^{2}={z}^{2}=\frac{1}{2}{x}^{2}$.
∴cos<$\overrightarrow{a}$,$\overrightarrow{k}$>=$\frac{z}{\sqrt{{x}^{2}+{y}^{2}+{z}^{2}}}=\sqrt{\frac{{z}^{2}}{{x}^{2}+{y}^{2}+{z}^{2}}}=\sqrt{\frac{\frac{1}{2}{x}^{2}}{2{x}^{2}}}$=$\frac{1}{2}$.
∴<$\overrightarrow{a}$,$\overrightarrow{k}$>=60°.
故答案為:60°.
點(diǎn)評(píng) 本題考查平面向量的數(shù)量積運(yùn)算,考查了由數(shù)量積求向量的夾角,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | n2-1 | B. | n2 | C. | n2+1 | D. | (n+1)2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 關(guān)于原點(diǎn)對(duì)稱 | B. | 關(guān)于x軸對(duì)稱 | ||
C. | 關(guān)于直線x=-$\frac{π}{6}$對(duì)稱 | D. | 關(guān)于點(diǎn)($\frac{π}{6}$,0)對(duì)稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{\sqrt{2}}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com