19.從一批產(chǎn)品中取出三件,設(shè)A=“三件產(chǎn)品全不是次品”,B=“三件產(chǎn)品全是次品”,C=“三件產(chǎn)品不全是次品”,則下列結(jié)論中正確的是(2);
(1)A與C互斥 (2)B與C互斥 (3)任兩個(gè)均互斥  (4)任兩個(gè)均不互斥.

分析 利用互斥事件、對(duì)立事件的定義直接求解.

解答 解:∵從一批產(chǎn)品中取出三件,
設(shè)A=“三件產(chǎn)品全不是次品”,B=“三件產(chǎn)品全是次品”,
C=“三件產(chǎn)品不全是次品”,
∴事件A與事件C能同時(shí)發(fā)生,A與C不是互斥事件,
∴(1)錯(cuò)誤; 
(2)事件B與事件C不能同時(shí)發(fā)生,但能同時(shí)不發(fā)生,
∴B與C是互斥事件,故(2)正確;
(3)由A與C不是互斥事件,故(3)錯(cuò)誤;
(4)由B與C是互斥事件,知(4)錯(cuò)誤.
故答案為:(2).

點(diǎn)評(píng) 本考查命題真假的判斷,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意互斥事件的概念的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.盒子中有6只燈泡,其中4只正品.2只次品,有放回地從中任取兩次,每次只取一只,則事件:取到的兩只中正品、次品各一只的概率(  )
A.$\frac{2}{3}$B.$\frac{4}{9}$C.$\frac{2}{9}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.設(shè)向量$\overrightarrow a$與$\overrightarrow b$的夾角為θ,若$\overrightarrow a$=(1,2),2$\overrightarrow b$-$\overrightarrow a$=(-1,2),則cosθ=$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}1,x≥0\\-1,x<0\end{array}$,g(x)=$\frac{x^2}{e^x}$f(x-1),則函數(shù)g(x)的遞增區(qū)間是(-∞,0],[1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,已知a=4,c=2$\sqrt{2}$,cosA=-$\frac{\sqrt{2}}{4}$.
(1)求b和sinC的值;
(2)求cos(2A+$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.要得到函數(shù)y=cos2x的圖象,只需將函數(shù)y=cos(2x+$\frac{π}{3}$)的圖象( 。
A.向右平移$\frac{π}{6}$個(gè)單位B.向右平移$\frac{π}{3}$個(gè)單位
C.向左平移$\frac{π}{3}$個(gè)單位D.向左平移$\frac{π}{6}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.點(diǎn)P從(1,0)出發(fā),沿單位圓逆時(shí)針?lè)较蜻\(yùn)動(dòng)$\frac{5π}{6}$弧長(zhǎng)到達(dá)Q點(diǎn),則Q點(diǎn)的坐標(biāo)為( 。
A.(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$)B.(-$\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$)C.(-$\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$)D.(-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.設(shè)復(fù)數(shù)z=$\frac{2+i}{(1+i)^{2}}$(i為虛數(shù)單位),則|z|=$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.P是半徑為1的球面上任意一點(diǎn),PA、PB、PC是兩兩互相垂直的三條弦,則PA2+PB2+PC2=4.

查看答案和解析>>

同步練習(xí)冊(cè)答案