4.要得到函數(shù)y=cos2x的圖象,只需將函數(shù)y=cos(2x+$\frac{π}{3}$)的圖象(  )
A.向右平移$\frac{π}{6}$個(gè)單位B.向右平移$\frac{π}{3}$個(gè)單位
C.向左平移$\frac{π}{3}$個(gè)單位D.向左平移$\frac{π}{6}$個(gè)單位

分析 函數(shù)y=cos(2x+$\frac{π}{3}$)=cos2(x+$\frac{π}{6}$)的圖象,按照平移原則,推出函數(shù)y=3cos2x的圖象,即可得到選項(xiàng).

解答 解:因?yàn)楹瘮?shù)y=cos(2x+$\frac{π}{3}$)=cos2(x+$\frac{π}{6}$),所以只需把函數(shù)y=cos(2x+$\frac{π}{3}$)的圖象,向右平移$\frac{π}{6}$個(gè)單位,得到函數(shù)y=cos2x的圖象,
故選:A.

點(diǎn)評 本題主要考查三角函數(shù)的平移.三角函數(shù)的平移原則為:左加右減、上加下減,注意平移的逆向應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)f(x)=ex(x2+2ax+2)在R上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是[-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在(1+x)2n+x(1+x)2n-1+…+xn(1+x)n的展開式中,xn的系數(shù)為( 。
A.$\frac{(2n+1)!}{n!n!}$B.$\frac{(2n+2)!}{n!n!}$C.$\frac{(2n+1)!}{n!(n+1)!}$D.$\frac{(2n+2)!}{n!(n+1)!}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知f(x)是定義在(0,+∞)上的函數(shù),對任意兩個(gè)不相等的正數(shù)x1,x2,都有$\frac{{x}_{2}f({x}_{1})-{x}_{1}({x}_{2})}{{x}_{2}-{x}_{1}}$<0,記a=$\frac{f({2}^{0.2})}{{2}^{0.2}}$,b=$\frac{f(sin\frac{π}{6})}{sin\frac{π}{6}}$,c=$\frac{f(lo{g}_{π}3)}{io{g}_{π}3}$,則(  )
A.c<b<aB.c<a<bC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.從一批產(chǎn)品中取出三件,設(shè)A=“三件產(chǎn)品全不是次品”,B=“三件產(chǎn)品全是次品”,C=“三件產(chǎn)品不全是次品”,則下列結(jié)論中正確的是(2);
(1)A與C互斥 (2)B與C互斥 (3)任兩個(gè)均互斥  (4)任兩個(gè)均不互斥.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某企業(yè)有職工450人,其中高級職工45人,中級職工135人,一般職工270人,現(xiàn)抽30人進(jìn)行分層抽樣,則各職稱人數(shù)分別為( 。
A.5,10,15B.3,9,18C.3,10,17D.5,9,16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.變量x與y相對應(yīng)的一組數(shù)據(jù)為(1,3),(2,5.3),(3,6.9),(4,9.1),(5,10.8);變量U與V相對應(yīng)的一組數(shù)據(jù)為(1,12.7),(2,10.2),(3,7),(4,3.6),(5,1),r1表示變量y與x之間的線性相關(guān)系數(shù),r2表示變量V與U之間的線性相關(guān)系數(shù),則( 。
A.r2<r1<0B.0<r2<r1C.r2<0<r1D.r2=r1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.隨機(jī)變量ξ的概率分布如表:
ξ-101
Pabc
其中a,b,c成等差數(shù)列,則b=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若(x+1)10=a0+a1(x-1)+a2(x-1)2+…+a10(x-1)10,則系數(shù)a0=1024.

查看答案和解析>>

同步練習(xí)冊答案