13.如果復(fù)數(shù)(1+bi)(2+i)是純虛數(shù),則$|{\frac{2b+3i}{1+bi}}|$的值為$\sqrt{5}$.

分析 利用復(fù)數(shù)代數(shù)形式的乘法運(yùn)算化簡(jiǎn)復(fù)數(shù),再由已知復(fù)數(shù)(1+bi)(2+i)是純虛數(shù),列出方程組,求解得到b的值,然后代入$\frac{2b+3i}{1+bi}$,由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),由復(fù)數(shù)求模公式計(jì)算則答案可求.

解答 解:(1+bi)(2+i)=2-b+(1+2b)i,
∵復(fù)數(shù)(1+bi)(2+i)是純虛數(shù),
∴$\left\{\begin{array}{l}{2-b=0}\\{1+2b≠0}\end{array}\right.$,
解得b=2.
$\frac{2b+3i}{1+bi}$=$\frac{4+3i}{1+2i}$=$\frac{(4+3i)(1-2i)}{(1+2i)(1-2i)}=\frac{10-5i}{5}=2-i$,
則$|{\frac{2b+3i}{1+bi}}|$=$\sqrt{{2}^{2}+1}=\sqrt{5}$
故答案為:$\sqrt{5}$.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖所示,已知正四棱錐S-ABCD,E、F分別是側(cè)棱SA、SC的中點(diǎn).求證:
(1)EF∥平面ABCD;
(2)EF⊥平面SBD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.設(shè)a=${∫}_{0}^{\frac{π}{2}}$sinxdx,則(2x+$\frac{a}{x}$)6展開式的常數(shù)項(xiàng)為160.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,在正方體ABCD-A1B1C1D1中.E是AA1的中點(diǎn),畫出過(guò)D1,C,E的平面與平面ABB1A1的交線,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.等差數(shù)列{an}中,a3+a4+a8=12,則前9項(xiàng)和S9=( 。
A.18B.24C.36D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.計(jì)算:lg20-lg2-${(\frac{1}{3})^{{{log}_3}2}}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x≥1}\\{x+y≤5}\\{x-y≤-2}\end{array}\right.$,則$\frac{2y-1}{2x+3}$的最大值為$\frac{7}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知數(shù)列{an}的前n項(xiàng)和Sn=$\frac{1}{2}$(n2+n),求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若函數(shù)f(x)=x${\;}^{\frac{1}{2}}$,則f(x)的反函數(shù)f-1(x)的定義域是[0,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案