【題目】某水產(chǎn)品經(jīng)銷商銷售某種鮮魚,售價為每公斤元,成本為每公斤元.銷售宗旨是當(dāng)天進貨當(dāng)天銷售.如果當(dāng)天賣不出去,未售出的全部降價處理完,平均每公斤損失元.根據(jù)以往的銷售情況,按,,,,進行分組,得到如圖所示的頻率分布直方圖.
(1)根據(jù)頻率分布直方圖計算該種鮮魚日需求量的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間中點值代表);
(2)該經(jīng)銷商某天購進了公斤這種鮮魚,假設(shè)當(dāng)天的需求量為公斤,利潤為元.求關(guān)于的函數(shù)關(guān)系式,并結(jié)合頻率分布直方圖估計利潤不小于元的概率.
【答案】(1)265;(2)0.7.
【解析】
試題分析:(1)每個矩形的中點橫坐標與該矩形的縱坐標相乘后求和,即可得到該種鮮魚日需求量的平均數(shù);(2)分兩種情況討論,利用銷售額與成本的差可求得 關(guān)于的函數(shù)關(guān)系式,根據(jù)利潤不小于元,求出,根據(jù)直方圖的性質(zhì)可得利潤不小于元的概率,等于后三個矩形的面積之和,從而可得結(jié)果.
試題解析:(Ⅰ)x=50×0.0010×100+150×0.0020×100+250×0.0030×100+350×0.0025×100+450×0.0015×100=265.
(Ⅱ)當(dāng)日需求量不低于300公斤時,利潤Y=(20-15)×300=1500元;
當(dāng)日需求量不足300公斤時,利潤Y=(20-15)x-(300-x)×3=8x-900元;
故Y=,
由Y≥700得,200≤x≤500,
所以P(Y≥700)=P(200≤x≤500)
=0.0030×100+0.0025×100+0.0015×100=0.7.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,平面平面,為等邊三角形,且,,分別為,的中點.
(1)求證:平面;
(2)求證:平面平面;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中, ,且.
(Ⅰ)當(dāng)時,證明:平面平面;
(Ⅱ)當(dāng)四棱錐的體積為,且二面角為鈍角時,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
已知拋物線C的方程C:y2="2" p x(p>0)過點A(1,-2).
(I)求拋物線C的方程,并求其準線方程;
(II)是否存在平行于OA(O為坐標原點)的直線l,使得直線l與拋物線C有公共點,且直線OA與l的距離等于?若存在,求出直線l的方程;若不存在,說明理由。
【答案】(I)拋物線C的方程為,其準線方程為(II)符合題意的直線l 存在,其方程為2x+y-1 =0.
【解析】
試題(Ⅰ)求拋物線標準方程,一般利用待定系數(shù)法,只需一個獨立條件確定p的值:(-2)2=2p·1,所以p=2.再由拋物線方程確定其準線方程:,(Ⅱ)由題意設(shè):,先由直線OA與的距離等于根據(jù)兩條平行線距離公式得:解得,再根據(jù)直線與拋物線C有公共點確定
試題解析:解 (1)將(1,-2)代入y2=2px,得(-2)2=2p·1,
所以p=2.
故所求的拋物線C的方程為
其準線方程為.
(2)假設(shè)存在符合題意的直線,
其方程為.
由得.
因為直線與拋物線C有公共點,
所以Δ=4+8t≥0,解得.
另一方面,由直線OA到的距離
可得,解得.
因為-1[-,+∞),1∈[-,+∞),
所以符合題意的直線存在,其方程為.
考點:拋物線方程,直線與拋物線位置關(guān)系
【名師點睛】求拋物線的標準方程的方法及流程
(1)方法:求拋物線的標準方程常用待定系數(shù)法,因為未知數(shù)只有p,所以只需一個條件確定p值即可.
(2)流程:因為拋物線方程有四種標準形式,因此求拋物線方程時,需先定位,再定量.
提醒:求標準方程要先確定形式,必要時要進行分類討論,標準方程有時可設(shè)為y2=mx或x2=my(m≠0).
【題型】解答題
【結(jié)束】
22
【題目】已知橢圓:的左右焦點與其短軸的一個端點是正三角形的三個頂點,點在橢圓上.
(1)求橢圓的方程;
(2)直線過橢圓左焦點交橢圓于,為橢圓短軸的上頂點,當(dāng)直線時,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C對應(yīng)的邊分別是a,b,c,已知cos2A﹣3cos(B+C)=1.
(1)求角A的大。
(2)若△ABC的面積S=5,b=5,求sinBsinC的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角中,,,點在線段上.
(Ⅰ) 若,求的長;
(Ⅱ)若點在線段上,且,問:當(dāng)取何值時,的面積最小?并求出面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若直線與曲線的交點的橫坐標為,且,求整數(shù)所有可能的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是R上的奇函數(shù).
(1)求a,b的值;
(2)判斷并證明f(x)的單調(diào)性;
(3)若對任意實數(shù)x,不等式f[f(x)﹣m]0恒成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程是(為參數(shù)),以該直角坐標系的原點為極點, 軸的正半軸為極軸建立極坐標系,直線的極坐標方程為.
(1)寫出曲線的普通方程和直線的直角坐標方程;
(2)設(shè)點,直線與曲線相交于兩點,且,求實數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com