分析 先根據(jù)二倍角公式化簡被積函數(shù),再根據(jù)定積分的計算法則計算即可.
解答 解:$\frac{cos2x}{cosx+sinx}$dx=$\frac{co{s}^{2}x-si{n}^{2}x}{cosx+sinx}$=cosx-sinx,
∴${∫}_{0}^{\frac{π}{4}}$$\frac{cos2x}{cosx+sinx}$dx=${∫}_{0}^{\frac{π}{4}}$(cosx-sinx)dx=(sinx+cosx)|${\;}_{0}^{\frac{π}{4}}$=(sin$\frac{π}{4}$+cos$\frac{π}{4}$)-(sin0+cos0)=$\sqrt{2}$-1,
故答案為:$\sqrt{2}$-1
點評 本題考查了定積分的計算,關(guān)鍵是求出原函數(shù),屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①④ | B. | ②④ | C. | ②③ | D. | ③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | -$\frac{1}{3}$ | C. | -$\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com