16.在△ABC中,已知AB=2,BC=5$\sqrt{3}$,cosB=$\frac{4}{5}$,則△ABC的面積是3$\sqrt{3}$.

分析 根據(jù)同角的三角公式求得sinB,再由三角形面積公式可求得結(jié)果.

解答 解:cosB=$\frac{4}{5}$,sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{3}{5}$,
△ABC的面積S=$\frac{1}{2}$AB•BC•sinB=$\frac{1}{2}$×2×5$\sqrt{3}$×$\frac{3}{5}$=3$\sqrt{3}$.
故答案為:3$\sqrt{3}$.

點(diǎn)評(píng) 本題考查同角的基本關(guān)系,三角形的面積公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知x>0,y>0,且x+y=1,求:
(1)x2+y2的最小值;
(2)$\frac{1}{x}$+$\frac{1}{y}$+$\frac{1}{xy}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在極坐標(biāo)系中,點(diǎn)A($\frac{\sqrt{2}}{2}$,$\frac{π}{6}$),B($\frac{\sqrt{2}}{2}$,$\frac{2π}{3}$),則線段AB中點(diǎn)的極坐標(biāo)為( 。
A.($\frac{1}{2}$,$\frac{5π}{12}$)B.(1,$\frac{5π}{12}$)C.($\frac{\sqrt{2}}{2}$,$\frac{5π}{12}$)D.($\frac{\sqrt{2}}{2}$,$\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.在△ABC中,A=$\frac{π}{3}$,a=$\sqrt{3}$,則BC邊上的中線AM長(zhǎng)的取值范圍是($\frac{\sqrt{3}}{2}$,$\frac{3}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=$\frac{1}{2}$,Sn=2an+1-1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=$\frac{n+1}{{a}_{n}}$(n∈N+),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.一個(gè)球與一個(gè)正三棱柱(底面是正三角形,側(cè)棱垂直于底面的三棱柱)的三個(gè)側(cè)面和兩個(gè)底面都相切.已知這個(gè)球的體積是$\frac{9π}{2}$,那么這個(gè)三棱柱的體積是( 。
A.81$\sqrt{3}$B.$\frac{81}{2}$$\sqrt{3}$C.$\frac{81}{4}$$\sqrt{3}$D.$\frac{81}{16}$$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知公比小于1的等比數(shù)列{an}的前n項(xiàng)和為Sn,a1=$\frac{2}{3}$且13a2=3S3(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=nan,求數(shù)列{bn}的前項(xiàng)n和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知關(guān)于x的方程$\sqrt{1-{x}^{2}}$=x+m沒(méi)有實(shí)數(shù)根,則m的取值范圍是m>$\sqrt{2}$,或m<-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知2sinα=1+cosα,則tan$\frac{α}{2}$=$±\frac{1}{2}$或無(wú)解.

查看答案和解析>>

同步練習(xí)冊(cè)答案