分析 (1)若a=$\frac{1}{2}$,求函數(shù)的導(dǎo)數(shù),利用函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系即可求函數(shù)f(x)的單調(diào)區(qū)間;
(2)根據(jù)函數(shù)與方程之間的關(guān)系轉(zhuǎn)化為函數(shù)存在零點(diǎn)問(wèn)題,構(gòu)造函數(shù),求函數(shù)的導(dǎo)數(shù),利用函數(shù)極值和函數(shù)零點(diǎn)之間的關(guān)系進(jìn)行轉(zhuǎn)化求解即可.
解答 解:(1)若a=$\frac{1}{2}$,F(xiàn)(x)=(x2+bx+1)ex,
則F′(x)=(2x+b)ex+(x2+bx+1)ex=[x2+(b+2)x+b+1]ex=(x+1)[x+(b+1)]ex,
由F′(x)=0得(x+1)[x+(b+1)]=0,即x=-1或x=-(b+1),
①若b+1=1,即b=0時(shí),F(xiàn)′(x)=(x+1)2ex≥0,此時(shí)函數(shù)單調(diào)遞增,單調(diào)遞增區(qū)間為(-∞,+∞),
②若-(b+1)<-1,即b>0時(shí),由F′(x)>0得(x+1)[x+(b+1)]>0,即x>-1或x<-(b+1),
此時(shí)函數(shù)單調(diào)遞增,單調(diào)遞增區(qū)間為(-∞,-(b+1)),(-1,+∞),
由F′(x)<0得(x+1)[x+(b+1)]<0,即-(b+1)<x<-1,
此時(shí)函數(shù)單調(diào)遞減,單調(diào)遞減區(qū)間為(-(b+1),-1),
③若-(b+1)>-1,即b<0時(shí),由F′(x)>0得(x+1)[x+(b+1)]>0,解得:x>-(b+1)或x<-1,
此時(shí)函數(shù)單調(diào)遞增,單調(diào)遞增區(qū)間為(-∞,-1),(-(b+1),+∞),
由F′(x)<0得(x+1)[x+(b+1)]<0,解得:-1<x<-(b+1),
此時(shí)函數(shù)單調(diào)遞減,單調(diào)遞減區(qū)間為(-1,-(b+1));
(2)方程f(x)=ex在(0,1)內(nèi)有解,即2ax2+bx+1=ex在(0,1)內(nèi)有解,
即ex-2ax2-bx-1=0,
設(shè)g(x)=ex-2ax2-bx-1,
則g(x)在(0,1)內(nèi)有零點(diǎn),
設(shè)x0是g(x)在(0,1)內(nèi)的一個(gè)零點(diǎn),
則g(0)=0,g(1)=0,知函數(shù)g(x)在(0,x0)和(x0,1)上不可能單調(diào)遞增,也不可能單調(diào)遞減,
設(shè)h(x)=g′(x),
則h(x)在(0,x0)和(x0,1)上存在零點(diǎn),
即h(x)在(0,1)上至少有兩個(gè)零點(diǎn),
g′(x)=ex-4ax-b,h′(x)=ex-4a,
當(dāng)a≤$\frac{1}{4}$時(shí),h′(x)>0,h(x)在(0,1)上遞增,h(x)不可能有兩個(gè)及以上零點(diǎn),
當(dāng)a≥$\frac{e}{4}$時(shí),h′(x)<0,h(x)在(0,1)上遞減,h(x)不可能有兩個(gè)及以上零點(diǎn),
當(dāng)$\frac{1}{4}$<a<$\frac{e}{4}$時(shí),令h′(x)=0,得x=ln(4a)∈(0,1),
則h(x)在(0,ln(4a))上遞減,在(ln(4a),1)上遞增,h(x)在(0,1)上存在最小值h(ln(4a)).
若h(x)有兩個(gè)零點(diǎn),則有h(ln(4a))<0,h(0)>0,h(1)>0,
h(ln(4a))=4a-4aln(4a)-b=6a-4aln(4a)+1-e,$\frac{1}{4}$<a<$\frac{e}{4}$,
設(shè)φ(x)=$\frac{3}{2}$x-xlnx+1-x,(1<x<e),
則φ′(x)=$\frac{1}{2}$-lnx,
令φ′(x)=$\frac{1}{2}$-lnx=0,得x=$\sqrt{e}$,
當(dāng)1<x<$\sqrt{e}$時(shí),φ′(x)>0,此時(shí)函數(shù)φ(x)遞增,
當(dāng)$\sqrt{e}$<x<e時(shí),φ′(x)<0,此時(shí)函數(shù)φ(x)遞減,
則φ(x)max=φ($\sqrt{e}$)=$\sqrt{e}$+1-e<0,
則h(ln(4a))<0恒成立,
由h(0)=1-b=2a-e+2>0,h(1)=e-4a-b>0,
得$\frac{e-2}{2}$<a<$\frac{1}{2}$,
當(dāng)$\frac{e-2}{2}$<a<$\frac{1}{2}$時(shí),設(shè)h(x)的兩個(gè)零點(diǎn)為x1,x2,則g(x)在(0,x1)遞增,
在(x1,x2)上遞減,在(x2,1)遞增,
則g(x1)>g(0)=0,
g(x2)<g(1)=0,
則g(x)在(x1,x2)內(nèi)有零點(diǎn),
綜上,實(shí)數(shù)a的取值范圍是($\frac{e-2}{2}$,$\frac{1}{2}$).
點(diǎn)評(píng) 本題主要考查函數(shù)單調(diào)性和單調(diào)區(qū)間的求解和判斷,利用函數(shù)單調(diào)性的性質(zhì)以及函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系是解決本題的關(guān)鍵,綜合性較強(qiáng),難度較大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{28\sqrt{14}}{3}$π | B. | $\frac{56\sqrt{14}}{3}$π | C. | $\frac{7\sqrt{14}}{3}$π | D. | $\frac{7\sqrt{14}}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 7 | B. | 8 | C. | 9 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3π}{4}$ | B. | $\frac{3π}{2}$ | C. | $\frac{\sqrt{3}π}{4}$ | D. | $\frac{\sqrt{3}π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|x<-2或x>3} | B. | {x|x<0或x>2} | C. | {x|x<0或x>3} | D. | {x|x<-1或x>3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com