1.在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸,與直角坐標(biāo)系xOy取相同的長度單位,建立極坐標(biāo)系,設(shè)曲線C1的極坐標(biāo)方程為ρ=2cosθ,曲線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=-\frac{4}{5}t}\\{y=-2+\frac{3}{5}t}\end{array}\right.$(t為參數(shù))
(1)判斷曲線C1與C2的位置關(guān)系;
(2)設(shè)M(x,y)為曲線C1上任意一點(diǎn),求x+y的取值范圍.

分析 (1)曲線C1與C2,化為普通方程,即可判斷曲線C1與C2的位置關(guān)系;
(2)令t=x+y,即x+y-t=0,利用圓心到直線的距離d=$\frac{|1-t|}{\sqrt{2}}$≤1,求出t的范圍,即可求x+y的取值范圍.

解答 解:(1)曲線C1的極坐標(biāo)方程為ρ=2cosθ,所以C1的普通方程為(x-1)2+y2=1,
曲線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=-\frac{4}{5}t}\\{y=-2+\frac{3}{5}t}\end{array}\right.$(t為參數(shù)),所以C2的普通方程為3x+4y+8=0,
圓心C1(1,0)到3x+4y+8=0的距離d=$\frac{3+8}{5}$>1,
所以C1與C2相離.
(2)令t=x+y,即x+y-t=0,
圓心到直線的距離d=$\frac{|1-t|}{\sqrt{2}}$≤1,
∴1-$\sqrt{2}$≤t≤1+$\sqrt{2}$,
∴x+y的取值范圍是[1-$\sqrt{2}$,1+$\sqrt{2}$].

點(diǎn)評 本題考查極坐標(biāo)方程、參數(shù)方程與普通方程的互化,考查直線與圓的位置關(guān)系,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.點(diǎn)M的球坐標(biāo)(π,$\frac{π}{3}$,$\frac{π}{3}}$)化為直角坐標(biāo)為( 。
A.(1,0,0)B.$({\frac{{\sqrt{3}}}{4},\frac{3}{4},\frac{1}{2}})$C.$({\frac{{\sqrt{3}}}{4}π,\frac{3}{4}π,\frac{π}{2}})$D.$({\frac{3}{4}π,\frac{{\sqrt{3}}}{4}π,\frac{π}{2}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知三棱錐S-ABC的所有頂點(diǎn)都在球O的球 面上,SA⊥平面ABC,AB⊥BC且AB=BC=1,SA=$\sqrt{2}$,則球O的表面積是4π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.對a,b∈R,記max{a,b}=$\left\{\begin{array}{l}{a(a≥b)}\\{b(a<b)}\end{array}\right.$,則函數(shù)f(x)=max{|x+1|,x2}(x∈R)的最小值是(  )
A.$\frac{3-\sqrt{5}}{2}$B.$\frac{3+\sqrt{5}}{2}$C.$\frac{1+\sqrt{5}}{2}$D.$\frac{1-\sqrt{5}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)A={x|2x>1},B={x|y=log2(x+1)},則A∪B=( 。
A.{x|-1<x<0}B.{x|x≥1}C.{x|x>0}D.{x|x>-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在極坐標(biāo)系中,以(1,0)為圓心,且過極點(diǎn)的圓的極坐標(biāo)方程為( 。
A.ρ=1B.ρ=cosθC.ρ=2sinθD.ρ=2cosθ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=2lnx-x2+ax(a∈R).
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的圖象在x=1處的切線方程;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若函數(shù)f(x)的圖象與x軸有兩個(gè)不同的交點(diǎn)A(x1,0),B(x2,0).且x1<x2,求證:${f^/}(\frac{{{x_1}+{x_2}}}{2})<0$(其中f′(x)是f(x)的導(dǎo)函數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若函數(shù)f(x)在區(qū)間[n,m]上恒有f(x)∈[$\frac{n}{k}$,km]成立,則稱區(qū)間[n,m]為函數(shù)f(x)的“k度約束區(qū)間”,若區(qū)間[$\frac{1}{t}$,t](t>0)為函數(shù)f(x)=x2-tx+t2的“2度約束區(qū)間”,則實(shí)數(shù)t的取值范圍是( 。
A.(1,2]B.$(1,\root{3}{{\frac{3}{2}}}]$C.$({1,\sqrt{2}}]$D.$(\sqrt{2},2]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.水平放置的△ABC的斜二測直觀圖△A′B′C′如圖所示,已知A′C′=3,B′C′=2,則△ABC的面積為( 。
A.6B.3C.$\frac{{3\sqrt{2}}}{2}$D.$3\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案