15.求曲線y=x3-3x2+x-1在點(diǎn)P(2,-3)處的切線方程.

分析 求得函數(shù)的導(dǎo)數(shù),可得切線的斜率,運(yùn)用點(diǎn)斜式方程可得所求切線的方程.

解答 解:y=x3-3x2+x-1的導(dǎo)數(shù)為y′=3x2-6x+1,
可得在點(diǎn)P(2,-3)處的切線斜率為k=12-12+1=1,
即有在點(diǎn)P(2,-3)處的切線方程為y+3=x-2,
即為x-y-5=0.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的方程,考查導(dǎo)數(shù)的幾何意義,正確求導(dǎo)和運(yùn)用點(diǎn)斜式方程是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如圖,粗線畫(huà)出的是一個(gè)正方體被兩個(gè)平行平面所截后的幾何體的三視圖,圖中三個(gè)正方形的邊長(zhǎng)為4,則此幾何體的表面積為( 。
A.40+8$\sqrt{3}$B.48+8$\sqrt{3}$C.40+16$\sqrt{3}$D.48+16$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.如圖1,已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為a,M,N,Q分別是線段AD1,B1C,C1D1上的動(dòng)點(diǎn),當(dāng)三棱錐Q-BMN的俯視圖如圖2所示時(shí),三棱錐Q-BMN的體積為( 。
A.$\frac{1}{2}{a^3}$B.$\frac{1}{4}{a^3}$C.$\frac{{\sqrt{2}}}{4}{a^3}$D.$\frac{1}{12}{a^3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S3=6,S5=15.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=2an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知全集U={1,2,3,4},集合A={2,3},B={3,4},則(∁UA)∩(∁UB)={1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若${(1-\sqrt{2})^5}$=a+b$\sqrt{2}$(a,b為有理數(shù)),則a+b=( 。
A.32B.12C.0D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某班50位學(xué)生期中考試數(shù)學(xué)成績(jī)的頻率直方分布圖如圖所示,其中成績(jī)分組區(qū)間是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求圖中x的值;
(2)根據(jù)頻率直方分布圖計(jì)算該班50位學(xué)生期中考試數(shù)學(xué)成績(jī)的平均數(shù)與中位數(shù)(精確到個(gè)位);
(3)從成績(jī)不低于80分的學(xué)生中隨機(jī)選取2人,該2人中成績(jī)?cè)?0分以上(含90分)的人數(shù)記為X,求P(X=1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖是一個(gè)算法的程序框圖,當(dāng)輸入的x值為1時(shí),輸出y的結(jié)果恰好是$\frac{1}{2}$,則空白框處所填關(guān)系式可以是( 。
A.y=x2B.y=$\frac{1}{x}$C.y=2xD.y=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如圖,下列幾何體各自的三視圖中,三個(gè)視圖各不相同的是( 。
A.              
正方體
B.              
圓錐
C. 
三棱臺(tái)
D.
正四棱錐

查看答案和解析>>

同步練習(xí)冊(cè)答案